Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines

Wind energy has many advantages because it does not pollute and is an inexhaustible source of energy. In this paper Neural High Order Sliding Mode (NHOSM) control is developed for Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT). The stator winding is directly coupled with the main netw...

Full description

Autores:
Djilali, Larbi
Badillo-Olvera, Anuar
Rios, Yennifer Yuliana
López-Beltrán, Harold
Saihi, Lakhdar
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12399
Acceso en línea:
https://hdl.handle.net/20.500.12585/12399
Palabra clave:
Asynchronous Generators;
Powerpoint;
Energy Conversion
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0371f1bed25051cd237160e4ae30b0d0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12399
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
title Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
spellingShingle Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
Asynchronous Generators;
Powerpoint;
Energy Conversion
LEMB
title_short Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
title_full Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
title_fullStr Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
title_full_unstemmed Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
title_sort Neural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbines
dc.creator.fl_str_mv Djilali, Larbi
Badillo-Olvera, Anuar
Rios, Yennifer Yuliana
López-Beltrán, Harold
Saihi, Lakhdar
dc.contributor.author.none.fl_str_mv Djilali, Larbi
Badillo-Olvera, Anuar
Rios, Yennifer Yuliana
López-Beltrán, Harold
Saihi, Lakhdar
dc.subject.keywords.spa.fl_str_mv Asynchronous Generators;
Powerpoint;
Energy Conversion
topic Asynchronous Generators;
Powerpoint;
Energy Conversion
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Wind energy has many advantages because it does not pollute and is an inexhaustible source of energy. In this paper Neural High Order Sliding Mode (NHOSM) control is developed for Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT). The stator winding is directly coupled with the main network, whereas a Back-to-Back converter is installed to connect its rotor to the grid. The proposed control scheme is composed of Recurrent High Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF), which is used to build-up the DFIG models. Based on such identifier, the High Order Sliding Mode (HOSM) using Super-Twisting (ST) algorithm is synthesized. To show the potential of the selected scheme, a comparison study considering the NHOSM, Conventional Sliding mode (CSM), and the HOSM control is done. To ensure maximum power extractions and to protect the system, the Maximum Point Power Tracking (MPPT) algorithm and the h control are also implemented. Simulation results demonstrate the effectiveness of the proposed scheme for enhancing robustness, reducing chattering, and improving quality and quantity of the generated power. ©
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:52:11Z
dc.date.available.none.fl_str_mv 2023-07-21T20:52:11Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Djilali, L., Badillo-Olvera, A., Rios, Y. Y., López-Beltrán, H., & Saihi, L. (2021). Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Latin America Transactions, 20(2), 223-232.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12399
dc.identifier.doi.none.fl_str_mv 10.1109/TLA.2022.9661461
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Djilali, L., Badillo-Olvera, A., Rios, Y. Y., López-Beltrán, H., & Saihi, L. (2021). Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Latin America Transactions, 20(2), 223-232.
10.1109/TLA.2022.9661461
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12399
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE Latin America Transactions
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/1/5456%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/4/5456%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/5/5456%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
819392dcb29d96865686bc4ee03f78d0
be5221c2144d1e6acdd4fb44b109d18f
f659e344f60b07649c723815c429a0d8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021627508162560
spelling Djilali, Larbie4fab56c-44fe-4466-a92a-b95778e48388Badillo-Olvera, Anuar26cf08f2-65d7-4758-a965-4000d0140ca4Rios, Yennifer Yuliana7e43cfda-699d-49a8-86cb-03733c7e6069López-Beltrán, Haroldb06e6033-56b0-47e5-9d10-ca6f49940765Saihi, Lakhdar90b71acb-8a0b-4071-8584-1f4e0a9198112023-07-21T20:52:11Z2023-07-21T20:52:11Z20222023Djilali, L., Badillo-Olvera, A., Rios, Y. Y., López-Beltrán, H., & Saihi, L. (2021). Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Latin America Transactions, 20(2), 223-232.https://hdl.handle.net/20.500.12585/1239910.1109/TLA.2022.9661461Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWind energy has many advantages because it does not pollute and is an inexhaustible source of energy. In this paper Neural High Order Sliding Mode (NHOSM) control is developed for Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT). The stator winding is directly coupled with the main network, whereas a Back-to-Back converter is installed to connect its rotor to the grid. The proposed control scheme is composed of Recurrent High Order Neural Network (RHONN) trained with the Extended Kalman Filter (EKF), which is used to build-up the DFIG models. Based on such identifier, the High Order Sliding Mode (HOSM) using Super-Twisting (ST) algorithm is synthesized. To show the potential of the selected scheme, a comparison study considering the NHOSM, Conventional Sliding mode (CSM), and the HOSM control is done. To ensure maximum power extractions and to protect the system, the Maximum Point Power Tracking (MPPT) algorithm and the h control are also implemented. Simulation results demonstrate the effectiveness of the proposed scheme for enhancing robustness, reducing chattering, and improving quality and quantity of the generated power. ©application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE Latin America TransactionsNeural High Order Sliding Mode Control for Doubly Fed Induction Generator based Wind Turbinesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Asynchronous Generators;Powerpoint;Energy ConversionLEMBCartagena de IndiasAbad, G., López, J., Rodríguez, M.A., Marroyo, L., Iwanski, G. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation (2011) Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. Cited 973 times. http://onlinelibrary.wiley.com/book/10.1002/9781118104965 ISBN: 978-047076865-5 doi: 10.1002/9781118104965Beltran, B., Benbouzid, M.E.H., Ahmed-Ali, T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine (2012) IEEE Transactions on Energy Conversion, 27 (2), art. no. 6130597, pp. 261-269. Cited 284 times. doi: 10.1109/TEC.2011.2181515Abed, N.Y., Kabsha, M.M., Abdlsalam, G.M. Low Voltage Ride-Through protection techniques for DFIG wind generator (2013) IEEE Power and Energy Society General Meeting, art. no. 6673049. Cited 14 times. ISBN: 978-147991303-9 doi: 10.1109/PESMG.2013.6673049Pena, R., Clare, J.C., Asher, G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variablespeed wind-energy generation (1996) IEE Proceedings: Electric Power Applications, 143 (3), pp. 231-241. Cited 2597 times. doi: 10.1049/ip-epa:19960288Poitiers, F., Bouaouiche, T., Machmoum, M. Advanced control of a doubly-fed induction generator for wind energy conversion (2009) Electric Power Systems Research, 79 (7), pp. 1085-1096. Cited 231 times. doi: 10.1016/j.epsr.2009.01.007Xu, L., Cartwright, P. Direct active and reactive power control of DFIG for wind energy generation (2006) IEEE Transactions on Energy Conversion, 21 (3), pp. 750-758. Cited 674 times. doi: 10.1109/TEC.2006.875472Huerta, H. Energy-Based Robust Control of Doubly-Fed Induction Generator (2016) Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 40 (1), pp. 23-33. Cited 4 times. http://www.shirazu.ac.ir/en/index.php?page_id=2300 doi: 10.1007/s40998-016-0003-3Saihi, L., Berbaoui, B., Glaoui, H., Djilali, L., Abdeldjalil, S. Robust sliding mode H∞ controller of DFIG based on variable speed wind energy conversion system (2020) Periodica polytechnica Electrical engineering and computer science, 64 (1), pp. 53-63. Cited 12 times. https://pp.bme.hu/eecs/article/view/14490/8506 doi: 10.3311/PPee.14490Martinez, M.I., Susperregui, A., Tapia, G., Xu, L. Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages (2013) IET Renewable Power Generation, 7 (4), pp. 370-379. Cited 88 times. doi: 10.1049/iet-rpg.2012.0172Djilali, L., Sanchez, E.N., Belkheiri, M. Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine (Open Access) (2018) International Transactions on Electrical Energy Systems, 28 (5), art. no. e2539. Cited 27 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038 doi: 10.1002/etep.2539Sun, D., Wang, X., Nian, H., Zhu, Z.Q. A Sliding-Mode Direct Power Control Strategy for DFIG under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power (Open Access) (2018) IEEE Transactions on Power Electronics, 33 (2), art. no. 7885559, pp. 1313-1322. Cited 99 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2017.2686980Levant, A. Sliding order and sliding accuracy in sliding mode control (1993) International Journal of Control, 58 (6), pp. 1247-1263. Cited 2597 times. doi: 10.1080/00207179308923053Zheng, X., Wei, W., Xu, D. Higher-order sliding mode control of DFIG wind energy system under LVRT (2010) Asia-Pacific Power and Energy Engineering Conference, APPEEC, art. no. 5449479. Cited 11 times. ISBN: 978-142444813-5 doi: 10.1109/APPEEC.2010.5449479Xiong, L., Li, P., Wang, J. High-order sliding mode control of DFIG under unbalanced grid voltage conditions (2020) International Journal of Electrical Power and Energy Systems, 117, art. no. 105608. Cited 38 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2019.105608Ruiz-Duarte, J.E., Loukianov, A.G. Output-Feedback Discrete-Time Sliding Mode Control via Disturbance Estimation (2018) Proceedings of IEEE International Workshop on Variable Structure Systems, 2018-July, art. no. 8460442, pp. 13-18. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153866439-1 doi: 10.1109/VSS.2018.8460442Benbouhenni, H., Boudjema, Z., Belaidi, A. Neuro-second order sliding mode control of a DFIG supplied by a two-level NSVM inverter for wind turbine system (2018) Iranian Journal of Electrical and Electronic Engineering, 14 (4), pp. 362-373. Cited 12 times. http://ijeee.iust.ac.ir/article-1-1239-en.pdf doi: 10.22068/IJEEE.14.4.362Barmish, B.R., Leitmann, G. On Ultimate Boundedness Control of Uncertain Systems in the Absence of Matching Assumptions (1982) IEEE Transactions on Automatic Control, 27 (1), pp. 153-158. Cited 279 times. doi: 10.1109/TAC.1982.1102862Castaneda, C.E., Loukianov, A.G., Sanchez, E.N., Castillo-Toledo, B. Discrete-time neural sliding-mode block control for a DC motor with controlled flux (2012) IEEE Transactions on Industrial Electronics, 59 (2), art. no. 5942161, pp. 1194-1207. Cited 52 times. doi: 10.1109/TIE.2011.2161246Senthilnathan, K., Iyswarya Annapoorani, K. A review on back-to-back converters in permanent magnet synchronous generator based wind energy conversion system (2016) Indonesian Journal of Electrical Engineering and Computer Science, 2 (3), pp. 583-591. Cited 11 times. http://www.iaescore.com/journals/index.php/IJEECS/article/download/428/317 doi: 10.11591/ijeecs.v2.i3.pp583-591Ruiz-Cruz, R., Sanchez, E.N., Loukianov, A.G., Ruz-Hernandez, J.A. Real-time neural inverse optimal control for a wind generator (2019) IEEE Transactions on Sustainable Energy, 10 (3), art. no. 8424432, pp. 1172-1183. Cited 28 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165391 doi: 10.1109/TSTE.2018.2862628Djilali, L., Sanchez, E.N., Belkheiri, M. First and High Order Sliding Mode Control of a DFIG-Based Wind Turbine (2020) Electric Power Components and Systems, 48 (1-2), pp. 105-116. Cited 9 times. www.tandf.co.uk/journals/titles/15325008.asp doi: 10.1080/15325008.2020.1758836http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL5456 (1).pdf5456 (1).pdfapplication/pdf3351904https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/1/5456%20%281%29.pdf819392dcb29d96865686bc4ee03f78d0MD51TEXT5456 (1).pdf.txt5456 (1).pdf.txtExtracted texttext/plain46979https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/4/5456%20%281%29.pdf.txtbe5221c2144d1e6acdd4fb44b109d18fMD54THUMBNAIL5456 (1).pdf.jpg5456 (1).pdf.jpgGenerated Thumbnailimage/jpeg10452https://repositorio.utb.edu.co/bitstream/20.500.12585/12399/5/5456%20%281%29.pdf.jpgf659e344f60b07649c723815c429a0d8MD5520.500.12585/12399oai:repositorio.utb.edu.co:20.500.12585/123992023-10-10 08:30:02.632Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=