Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm

Microgrids are a part of the power system that consists of one or more units of distributed generation and are expected to remain in operation after being disconnected from the system. Since they rely on overlying networks, frequency control is very important for network-independent operation. Some...

Full description

Autores:
Zishan, Farhad
Akbari, Ehsan
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
Molina-Cabrera, Alexander
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12253
Acceso en línea:
https://hdl.handle.net/20.500.12585/12253
Palabra clave:
Grid;
Power Sharing;
Inverters
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_02aa56b5b9a86c8f18556d4e6e0ca67f
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12253
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
title Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
spellingShingle Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
Grid;
Power Sharing;
Inverters
LEMB
title_short Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
title_full Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
title_fullStr Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
title_full_unstemmed Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
title_sort Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm
dc.creator.fl_str_mv Zishan, Farhad
Akbari, Ehsan
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
Molina-Cabrera, Alexander
dc.contributor.author.none.fl_str_mv Zishan, Farhad
Akbari, Ehsan
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
Molina-Cabrera, Alexander
dc.subject.keywords.spa.fl_str_mv Grid;
Power Sharing;
Inverters
topic Grid;
Power Sharing;
Inverters
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Microgrids are a part of the power system that consists of one or more units of distributed generation and are expected to remain in operation after being disconnected from the system. Since they rely on overlying networks, frequency control is very important for network-independent operation. Some of the most common problems in independently operating microgrids are frequency sustainability and its fluctuations. The main purpose of this study is to control the frequency of a microgrid in island mode in different scenarios. The objective function is defined based on time and changes in the system frequency. Thus, the variable parameters of the PID controller are transformed into an optimization problem and are solved through the hybrid PSO-GSA algorithm. The study considers four scenarios: (a) a microgrid dynamic model and optimal PID controller coefficients; (b) variable velocity disturbance applied to the studied system in order to observe power changes and the microgrid frequency; (c) stepped load changes applied to the studied system; and (d) the proposed methods on the standard test function. Simulations under different operating conditions are performed, indicating improvements in the stability of microgrid frequency fluctuations by means of the proposed control method. © 2022 by the authors.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:30:14Z
dc.date.available.none.fl_str_mv 2023-07-19T21:30:14Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Zishan, F., Akbari, E., Montoya, O. D., Giral-Ramírez, D. A., & Molina-Cabrera, A. (2022). Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm. Electronics, 11(23), 3886.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12253
dc.identifier.doi.none.fl_str_mv 10.3390/electronics11233886
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Zishan, F., Akbari, E., Montoya, O. D., Giral-Ramírez, D. A., & Molina-Cabrera, A. (2022). Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm. Electronics, 11(23), 3886.
10.3390/electronics11233886
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12253
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics (Switzerland)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/1/electronics-11-03886.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/4/electronics-11-03886.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/5/electronics-11-03886.pdf.jpg
bitstream.checksum.fl_str_mv 632fa9e555f8f77d534710d24f1af663
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
558484164dfe3a3ae72556a4d063dbdb
45773f838463692b642219b517df5bad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021606342656000
spelling Zishan, Farhad041e882b-354f-48b5-87bc-d4748b261f08Akbari, Ehsan273dc699-e32a-43d4-ae2f-e6bced4eeaffMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f5Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba398492023-07-19T21:30:14Z2023-07-19T21:30:14Z20222023Zishan, F., Akbari, E., Montoya, O. D., Giral-Ramírez, D. A., & Molina-Cabrera, A. (2022). Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithm. Electronics, 11(23), 3886.https://hdl.handle.net/20.500.12585/1225310.3390/electronics11233886Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarMicrogrids are a part of the power system that consists of one or more units of distributed generation and are expected to remain in operation after being disconnected from the system. Since they rely on overlying networks, frequency control is very important for network-independent operation. Some of the most common problems in independently operating microgrids are frequency sustainability and its fluctuations. The main purpose of this study is to control the frequency of a microgrid in island mode in different scenarios. The objective function is defined based on time and changes in the system frequency. Thus, the variable parameters of the PID controller are transformed into an optimization problem and are solved through the hybrid PSO-GSA algorithm. The study considers four scenarios: (a) a microgrid dynamic model and optimal PID controller coefficients; (b) variable velocity disturbance applied to the studied system in order to observe power changes and the microgrid frequency; (c) stepped load changes applied to the studied system; and (d) the proposed methods on the standard test function. Simulations under different operating conditions are performed, indicating improvements in the stability of microgrid frequency fluctuations by means of the proposed control method. © 2022 by the authors.21 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics (Switzerland)Efficient PID Control Design for Frequency Regulation in an Independent Microgrid Based on the Hybrid PSO-GSA Algorithminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Grid;Power Sharing;InvertersLEMBCartagena de IndiasShin, D.-U., Jeong, C.-H. Energy savings of simultaneous heating and cooling system according to indoor set temperature changes in the comfort range (2021) Energies, 14 (22), art. no. 7691. Cited 4 times. https://www.mdpi.com/1996-1073/14/22/7691/pdf doi: 10.3390/en14227691Sandelic, M., Peyghami, S., Sangwongwanich, A., Blaabjerg, F. Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges (2022) Renewable and Sustainable Energy Reviews, 159, art. no. 112127. Cited 27 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2022.112127Hamedi, K., Sadeghi, S., Esfandi, S., Azimian, M., Golmohamadi, H. Eco-emission analysis of multi-carrier microgrid integrated with compressed air and power-to-gas energy storage technologies (Open Access) (2021) Sustainability (Switzerland), 13 (9), art. no. 4681. Cited 11 times. https://www.mdpi.com/2071-1050/13/9/4681/pdf doi: 10.3390/su13094681Yuvaraja, S., Syed Abdul Salam, M., Vijayaraja, L., Kesavan, R., Dhanasekar, R. A novel PWM scheme for grid-tied inverter in micro-grid with enhanced power quality using silicon cells (Open Access) (2020) Materials Today: Proceedings, Part 9 46, pp. 4298-4304. Cited 2 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2021.03.129Wu, M., Niu, X., Gao, S., Wu, J. Power quality assessment for AC/DC hybrid micro grid based on on-site measurements (2019) Energy Procedia, 156, pp. 396-400. Cited 6 times. http://www.sciencedirect.com/science/journal/18766102 doi: 10.1016/j.egypro.2018.11.105Kiran, P., Vijaya Chandrakala, K.R.M. New interactive agent based reinforcement learning approach towards smart generator bidding in electricity market with micro grid integration (2020) Applied Soft Computing Journal, Part A 97, art. no. 106762. Cited 23 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.106762Ishaq, S., Khan, I., Rahman, S., Hussain, T., Iqbal, A., Elavarasan, R.M. A review on recent developments in control and optimization of micro grids (2022) Energy Reports, 8, pp. 4085-4103. Cited 32 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2022.01.080Nguyen, H.K., Khodaei, A., Han, Z. Incentive mechanism design for integrated microgrids in peak ramp minimization problem (2018) IEEE Transactions on Smart Grid, 9 (6), art. no. 7907337, pp. 5774-5785. Cited 63 times. doi: 10.1109/TSG.2017.2696903Sun, Y., Wu, X., Wang, J., Hou, D., Wang, S. Power Compensation of Network Losses in a Microgrid with BESS by Distributed Consensus Algorithm (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (4), art. no. 8985270, pp. 2091-2100. Cited 26 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221021 doi: 10.1109/TSMC.2020.2968605Khalghani, M.R., Khooban, M.H., Mahboubi-Moghaddam, E., Vafamand, N., Goodarzi, M. A self-tuning load frequency control strategy for microgrids: Human brain emotional learning (2016) International Journal of Electrical Power and Energy Systems, 75, pp. 311-319. Cited 104 times. doi: 10.1016/j.ijepes.2015.08.026Montoya, O.D., Zishan, F., Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks (Open Access) (2022) Mathematics, 10 (19), art. no. 3649. Cited 7 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10193649Abdel-Salam, M.M., El-Mohandes, M.T., Osman, A.H. PSO-based Protection Coordination and Power loss Minimization in Distribution Systems with DG Sources using Optimal Fault Current Limiters (2019) 2019 21st International Middle East Power Systems Conference, MEPCON 2019 - Proceedings, art. no. 9008038, pp. 1119-1126. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8977240 ISBN: 978-172815289-9 doi: 10.1109/MEPCON47431.2019.9008038Sepehrzad, R., Khojasteh Rahimi, M., Al-Durra, A., Allahbakhshi, M., Moridi, A. Optimal energy management of distributed generation in micro-grid to control the voltage and frequency based on PSO-adaptive virtual impedance method (Open Access) (2022) Electric Power Systems Research, 208, art. no. 107881. Cited 12 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.107881Sadeghi, B., Shafaghatian, N., Alayi, R., El Haj Assad, M., Zishan, F., Hosseinzadeh, H. Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm (2022) Clean Energy, 6 (1), pp. 869-882. Cited 8 times. https://academic.oup.com/ce/pages/About doi: 10.1093/ce/zkab062Mariam, L., Basu, M., Conlon, M.F. A Review of Existing Microgrid Architectures (Open Access) (2013) Journal of Engineering (United Kingdom), 2013, art. no. 937614. Cited 104 times. www.hindawi.com/journals/je/ doi: 10.1155/2013/937614Palizban, O., Kauhaniemi, K., Guerrero, J.M. Microgrids in active network management - Part I: Hierarchical control, energy storage, virtual power plants, and market participation (Open Access) (2014) Renewable and Sustainable Energy Reviews, 36, pp. 428-439. Cited 253 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2014.01.016Schiffer, J., Ortega, R., Astolfi, A., Raisch, J., Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids (Open Access) (2014) Automatica, 50 (10), pp. 2457-2469. Cited 310 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/j.automatica.2014.08.009Shete, P.S., Maurya, N.S., Moharil, R.M., Dutta, A.A. Analysis of Micro-grid under different loading conditions (Open Access) (2015) 2015 International Conference on Industrial Instrumentation and Control, ICIC 2015, art. no. 7150915, pp. 1120-1124. Cited 7 times. ISBN: 978-147997165-7 doi: 10.1109/IIC.2015.7150915Jia, Y., Wu, Z., Zhang, J., Yang, P., Zhang, Z. Control Strategy of Flywheel Energy Storage System Based on Primary Frequency Modulation of Wind Power (Open Access) (2022) Energies, 15 (5), art. no. 1850. Cited 7 times. https://www.mdpi.com/1996-1073/15/5/1850/pdf doi: 10.3390/en15051850Alayi, R., Zishan, F., Seyednouri, S.R., Kumar, R., Ahmadi, M.H., Sharifpur, M. Optimal load frequency control of island microgrids via a pid controller in the presence of wind turbine and pv (2021) Sustainability (Switzerland), 13 (19), art. no. 10728. Cited 38 times. https://www.mdpi.com/2071-1050/13/19/10728/pdf doi: 10.3390/su131910728Zhu, F., Zhou, X., Zhang, Y., Xu, D., Fu, J. A load frequency control strategy based on disturbance reconstruction for multi-area interconnected power system with hybrid energy storage system (Open Access) (2021) Energy Reports, 7, pp. 8849-8857. Cited 10 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.09.029Saxena, A., Shankar, R. Improved load frequency control considering dynamic demand regulated power system integrating renewable sources and hybrid energy storage system (2022) Sustainable Energy Technologies and Assessments, Part C 52, art. no. 102245. Cited 24 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2022.102245Veerendar, T., Kumar, D. CBO-based PID-F controller for Load frequency control of SPV integrated thermal power system (2022) Materials Today: Proceedings, Part 1 58, pp. 593-599. Cited 4 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2022.03.414Jalali, N., Razmi, H., Doagou-Mojarrad, H. Optimized fuzzy self-tuning PID controller design based on Tribe-DE optimization algorithm and rule weight adjustment method for load frequency control of interconnected multi-area power systems (Open Access) (2020) Applied Soft Computing Journal, 93, art. no. 106424. Cited 46 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.106424Rai, A., Das, D.K. The development of a fuzzy tilt integral derivative controller based on the sailfish optimizer to solve load frequency control in a microgrid, incorporating energy storage systems (2022) Journal of Energy Storage, 48, art. no. 103887. Cited 15 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2021.103887Li, J.M., Li, P. Research on microgrid frequency control with droop characteristic based on lagrange interpolation (2014) Applied Mechanics and Materials, 556-562, pp. 1814-1817. Cited 2 times. ISBN: 978-303835115-3 doi: 10.4028/www.scientific.net/AMM.556-562.1814Xing, W., Wang, H., Lu, L., Han, X., Sun, K., Ouyang, M. An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids (Open Access) (2021) Energy, 233, art. no. 121155. Cited 18 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2021.121155Zishan, F., Akbari, E., Montoya, O.D., Giral-Ramírez, D.A., Nivia-Vargas, A.M. Electricity retail market and accountability-based strategic bidding model with short-term energy storage considering the uncertainty of consumer demand response (2022) Results in Engineering, 16, art. no. 100679. Cited 5 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100679Arani, M.F.M., Mohamed, Y.A.-R.I. Analysis and impacts of implementing droop control in dfig-based wind turbines on microgrid/Weak-grid stability (Open Access) (2015) IEEE Transactions on Power Systems, 30 (1), art. no. 6820794, pp. 385-396. Cited 149 times. doi: 10.1109/TPWRS.2014.2321287Packiasudha, M., Suja, S., Jerome, J. A new Cumulative Gravitational Search algorithm for optimal placement of FACT device to minimize system loss in the deregulated electrical power environment (2017) International Journal of Electrical Power and Energy Systems, 84, pp. 34-46. Cited 49 times. doi: 10.1016/j.ijepes.2016.04.049Rabelo, M., Zahid, M.A., Agrawal, K., Kim, K., Cho, E.-C., Yi, J. Analysis of solder joint degradation and output power drop in silicon photovoltaic modules for reliability improvement (2021) Microelectronics Reliability, 127, art. no. 114399. Cited 4 times. https://www.journals.elsevier.com/microelectronics-reliability doi: 10.1016/j.microrel.2021.114399Kaloi, G.S., Wang, J., Baloch, M.H. Active and reactive power control of the doubly fed induction generator based on wind energy conversion system (2016) Energy Reports, 2, pp. 194-200. Cited 102 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2016.08.001Ahmadi, S.E., Rezaei, N., Khayyam, H. Energy management system of networked microgrids through optimal reliability-oriented day-ahead self-healing scheduling (Open Access) (2020) Sustainable Energy, Grids and Networks, 23, art. no. 100387. Cited 29 times. http://www.journals.elsevier.com/sustainable-energy-grids-and-networks/ doi: 10.1016/j.segan.2020.100387Chen, B., Chen, C., Wang, J., Butler-Purry, K.L. Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids (2018) IEEE Transactions on Power Systems, 33 (2), pp. 1507-1520. Cited 200 times. doi: 10.1109/TPWRS.2017.2720122Xu, W., Li, J., Dehghani, M., GhasemiGarpachi, M. Blockchain-based secure energy policy and management of renewable-based smart microgrids (2021) Sustainable Cities and Society, 72, art. no. 103010. Cited 24 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2021.103010Hossain Lipu, M.S., Ansari, S., Miah, M.S., Hasan, K., Meraj, S.T., Faisal, M., Jamal, T., (...), Hannan, M.A. A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid: Challenges and future directions (2022) Journal of Cleaner Production, 360, art. no. 132188. Cited 18 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2022.132188Pashajavid, E., Shahnia, F., Ghosh, A. Development of a Self-Healing Strategy to Enhance the Overloading Resilience of Islanded Microgrids (2017) IEEE Transactions on Smart Grid, 8 (2), pp. 868-880. Cited 87 times. doi: 10.1109/TSG.2015.2477601Obradovic, D., Ghandhari, M., Eriksson, R. Assessment and Design of Frequency Containment Reserves with HVDC Interconnections (2019) 2018 North American Power Symposium, NAPS 2018, art. no. 8600593. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8581391 ISBN: 978-153867138-2 doi: 10.1109/NAPS.2018.8600593Akbari, E., Shafaghatian, N., Zishan, F., Montoya, O.D., Giral-Ramírez, D.A. Optimized Two-Level Control of Islanded Microgrids to Reduce Fluctuations (Open Access) (2022) IEEE Access, 10, pp. 95824-95838. Cited 8 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2022.3203730Heidary, J., Gheisarnejad, M., Rastegar, H., Khooban, M.H. Survey on microgrids frequency regulation: Modeling and control systems (Open Access) (2022) Electric Power Systems Research, 213, art. no. 108719. Cited 9 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108719Abbas, G., Asad, M.U., Gu, J., Alelyani, S., Balas, V.E., Rashid Hussain, M., Farooq, U., (...), Chang, C. Multivariable unconstrained pattern search method for optimizing digital pid controllers applied to isolated forward converter (2021) Energies, 14 (1), art. no. 77. Cited 8 times. https://www.mdpi.com/1996-1073/14/1/77/pdf doi: 10.3390/en14010077Gomes, A.C., de Campos, A.S.C., Lopes, L.A.C., de Morais, A.S., Tofoli, F.L., da Silva, F.V.R. Analysis of a static model for DC microgrids based on droop and MPPT control (Open Access) (2019) International Transactions on Electrical Energy Systems, 29 (4), art. no. e2778. Cited 5 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-7038 doi: 10.1002/etep.2778Tayab, U.B., Roslan, M.A.B., Hwai, L.J., Kashif, M. A review of droop control techniques for microgrid (2017) Renewable and Sustainable Energy Reviews, 76, pp. 717-727. Cited 280 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.03.028Alencar Freitas, A.A., Carneiro de Araújo, F., Pereira Aragão, F.A., Alves de Souza, K.C., Tofoli, F.L., Mineiro Sá, E., Luiz Marcelo Antunes, F. Non-isolated high step-up DC–DC converter based on coupled inductors, diode-capacitor networks, and voltage multiplier cells (Open Access) (2022) International Journal of Circuit Theory and Applications, 50 (3), pp. 944-963. Cited 9 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-007X doi: 10.1002/cta.3182Kumar Khadanga, R., Kumar, A., Panda, S. Frequency control in hybrid distributed power systems via type-2 fuzzy PID controller (2021) IET Renewable Power Generation, 15 (8), pp. 1706-1723. Cited 26 times. https://ietresearch.onlinelibrary.wiley.com/journal/17521424 doi: 10.1049/rpg2.12140Alhasnawi, B.N., Jasim, B.H., Mansoor, R., Alhasnawi, A.N., Rahman, Z.-A.S.A., Haes Alhelou, H., Guerrero, J.M., (...), Siano, P. A new Internet of Things based optimization scheme of residential demand side management system (Open Access) (2022) IET Renewable Power Generation, 16 (10), pp. 1992-2006. Cited 13 times. https://ietresearch.onlinelibrary.wiley.com/journal/17521424 doi: 10.1049/rpg2.12466Zou, Y., Qian, J., Zeng, Y., Ismail, S., Dao, F., Feng, Z., Nie, C., (...), Mei, H. Optimized Robust Controller Design Based on CPSOGSA Optimization Algorithm and H2/H Weights Distribution Method for Load Frequency Control of Micro-Grid (2021) IEEE Access, 9, pp. 162093-162107. Cited 8 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2021.3132729Ganjei, N., Zishan, F., Alayi, R., Samadi, H., Jahangiri, M., Kumar, R., Mohammadian, A. Designing and Sensitivity Analysis of an Off-Grid Hybrid Wind-Solar Power Plant with Diesel Generator and Battery Backup for the Rural Area in Iran (Open Access) (2022) Journal of Engineering (United Kingdom), 2022, art. no. 4966761. Cited 16 times. www.hindawi.com/journals/je/ doi: 10.1155/2022/4966761Alayi, R., Zishan, F., Mohkam, M., Hoseinzadeh, S., Memon, S., Garcia, D.A. A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system (Open Access) (2021) Electronics (Switzerland), 10 (15), art. no. 1826. Cited 21 times. https://www.mdpi.com/2079-9292/10/15/1826/pdf doi: 10.3390/electronics10151826Shankar, R., Ganesh, N., Čep, R., Narayanan, R.C., Pal, S., Kalita, K. Hybridized Particle Swarm—Gravitational Search Algorithm for Process Optimization (Open Access) (2022) Processes, 10 (3), art. no. 616. Cited 7 times. http://www.mdpi.com/journal/processes doi: 10.3390/pr10030616Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems (Open Access) (2019) Information Sciences, 478, pp. 499-523. Cited 209 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2018.11.041Lin, A., Li, S., Liu, R. Mutual learning differential particle swarm optimization (Open Access) (2022) Egyptian Informatics Journal, 23 (3), pp. 469-481. Cited 3 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/723777/description#description doi: 10.1016/j.eij.2022.04.003Punyakum, V., Sethanan, K., Nitisiri, K., Pitakaso, R., Gen, M. Hybrid differential evolution and particle swarm optimization for Multi-visit and Multi-period workforce scheduling and routing problems (2022) Computers and Electronics in Agriculture, 197, art. no. 106929. Cited 9 times. www.elsevier.com/inca/publications/store/5/0/3/3/0/4 doi: 10.1016/j.compag.2022.106929Eappen, G., Shankar, T. Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network (Open Access) (2020) Physical Communication, 40, art. no. 101091. Cited 62 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/713690/description#description doi: 10.1016/j.phycom.2020.101091Pan, I., Das, S. Fractional Order AGC for Distributed Energy Resources Using Robust Optimization (2016) IEEE Transactions on Smart Grid, 7 (5), art. no. 7185454, pp. 2175-2186. Cited 166 times. doi: 10.1109/TSG.2015.2459766Bevrani, H., Habibi, F., Babahajyani, P., Watanabe, M., Mitani, Y. Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach (Open Access) (2012) IEEE Transactions on Smart Grid, 3 (4), art. no. 6213173, pp. 1935-1944. Cited 447 times. doi: 10.1109/TSG.2012.2196806http://purl.org/coar/resource_type/c_6501ORIGINALelectronics-11-03886.pdfelectronics-11-03886.pdfapplication/pdf6402542https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/1/electronics-11-03886.pdf632fa9e555f8f77d534710d24f1af663MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTelectronics-11-03886.pdf.txtelectronics-11-03886.pdf.txtExtracted texttext/plain62034https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/4/electronics-11-03886.pdf.txt558484164dfe3a3ae72556a4d063dbdbMD54THUMBNAILelectronics-11-03886.pdf.jpgelectronics-11-03886.pdf.jpgGenerated Thumbnailimage/jpeg8068https://repositorio.utb.edu.co/bitstream/20.500.12585/12253/5/electronics-11-03886.pdf.jpg45773f838463692b642219b517df5badMD5520.500.12585/12253oai:repositorio.utb.edu.co:20.500.12585/122532023-07-20 00:18:04.817Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=