Second-order cone approximation for voltage stability analysis in direct-current networks

In this study, the voltage stability margin for direct current (DC) networks in the presence of constant power loads is analyzed using a proposed convex mathematical reformulation. This convex model is developed by employing a second-order cone programming (SOCP) optimization that transforms the non...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9553
Acceso en línea:
https://hdl.handle.net/20.500.12585/9553
https://www.mdpi.com/2073-8994/12/10/1587
Palabra clave:
Convex reformulation
Direct current networks
Non-linear optimization
Numerical example
Second-order cone programming
Voltage stability margin
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0295d57b053069fc4acab93cacd9c02b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9553
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Second-order cone approximation for voltage stability analysis in direct-current networks
title Second-order cone approximation for voltage stability analysis in direct-current networks
spellingShingle Second-order cone approximation for voltage stability analysis in direct-current networks
Convex reformulation
Direct current networks
Non-linear optimization
Numerical example
Second-order cone programming
Voltage stability margin
title_short Second-order cone approximation for voltage stability analysis in direct-current networks
title_full Second-order cone approximation for voltage stability analysis in direct-current networks
title_fullStr Second-order cone approximation for voltage stability analysis in direct-current networks
title_full_unstemmed Second-order cone approximation for voltage stability analysis in direct-current networks
title_sort Second-order cone approximation for voltage stability analysis in direct-current networks
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Molina-Cabrera, Alexander
dc.subject.keywords.spa.fl_str_mv Convex reformulation
Direct current networks
Non-linear optimization
Numerical example
Second-order cone programming
Voltage stability margin
topic Convex reformulation
Direct current networks
Non-linear optimization
Numerical example
Second-order cone programming
Voltage stability margin
description In this study, the voltage stability margin for direct current (DC) networks in the presence of constant power loads is analyzed using a proposed convex mathematical reformulation. This convex model is developed by employing a second-order cone programming (SOCP) optimization that transforms the non-linear non-convex original formulation by reformulating the power balance constraint. The main advantage of the SOCP model is that the optimal global solution of a problem can be obtained by transforming hyperbolic constraints into norm constraints. Two test systems are considered to validate the proposed SOCP model. Both systems have been reported in specialized literature with 6 and 69 nodes. Three comparative methods are considered: (a) the Newton-Raphson approximation based on the determinants of the Jacobian matrices, (b) semidefinite programming models, and (c) the exact non-linear formulation. All the numerical simulations are conducted using the MATLAB and GAMS software. The effectiveness of the proposed SOCP model in addressing the voltage stability problem in DC grids is verified by comparing the objective function values and processing time.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-04T21:50:23Z
dc.date.available.none.fl_str_mv 2020-11-04T21:50:23Z
dc.date.issued.none.fl_str_mv 2020-09-24
dc.date.submitted.none.fl_str_mv 2020-11-04
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Gil-González, W.; Molina-Cabrera, A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry 2020, 12, 1587.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9553
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2073-8994/12/10/1587
dc.identifier.doi.none.fl_str_mv 10.3390/sym12101587
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Gil-González, W.; Molina-Cabrera, A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry 2020, 12, 1587.
10.3390/sym12101587
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9553
https://www.mdpi.com/2073-8994/12/10/1587
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Symmetry 2020, 12(10), 1587
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/1/99.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/4/99.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/5/99.pdf.jpg
bitstream.checksum.fl_str_mv 8724ab0e37c9679392e6e454cd9ea15d
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
414160062d4a69fe8547a9321f06c5e1
775ecd5bb8b3ed4137df1d0ca17aed2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021756563750912
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba398492020-11-04T21:50:23Z2020-11-04T21:50:23Z2020-09-242020-11-04Montoya, O.D.; Gil-González, W.; Molina-Cabrera, A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct-Current Networks. Symmetry 2020, 12, 1587.https://hdl.handle.net/20.500.12585/9553https://www.mdpi.com/2073-8994/12/10/158710.3390/sym12101587Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this study, the voltage stability margin for direct current (DC) networks in the presence of constant power loads is analyzed using a proposed convex mathematical reformulation. This convex model is developed by employing a second-order cone programming (SOCP) optimization that transforms the non-linear non-convex original formulation by reformulating the power balance constraint. The main advantage of the SOCP model is that the optimal global solution of a problem can be obtained by transforming hyperbolic constraints into norm constraints. Two test systems are considered to validate the proposed SOCP model. Both systems have been reported in specialized literature with 6 and 69 nodes. Three comparative methods are considered: (a) the Newton-Raphson approximation based on the determinants of the Jacobian matrices, (b) semidefinite programming models, and (c) the exact non-linear formulation. All the numerical simulations are conducted using the MATLAB and GAMS software. The effectiveness of the proposed SOCP model in addressing the voltage stability problem in DC grids is verified by comparing the objective function values and processing time.11 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Symmetry 2020, 12(10), 1587Second-order cone approximation for voltage stability analysis in direct-current networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Convex reformulationDirect current networksNon-linear optimizationNumerical exampleSecond-order cone programmingVoltage stability marginCartagena de IndiasPúblico generalDragiˇcevi´c, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids–Part I: A review of control strategies and stabilization techniques. IEEE Trans. Power Electron. 2016, 31, 4876–4891.Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153.Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777.Gan, L.; Low, S.H. Optimal power flow in direct current networks. IEEE Trans. Power Syst. 2014, 29, 2892–2904.Rouzbehi, K.; Miranian, A.; Candela, J.I.; Luna, A.; Rodriguez, P. A Generalized Voltage Droop Strategy for Control of Multiterminal DC Grids. IEEE Trans. Ind. Appl. 2015, 51, 607–618.Rouzbehi, K.; Miranian, A.; Luna, A.; Rodriguez, P. DC Voltage Control and Power Sharing in Multiterminal DC Grids Based on Optimal DC Power Flow and Voltage-Droop Strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1171–1180,Hamad, A.A.; El-Saadany, E.F. Multi-agent supervisory control for optimal economic dispatch in DC microgrids. Sustain. Cities Soc. 2016, 27, 129–136Barabanov, N.; Ortega, R.; Griñó, R.; Polyak, B. On Existence and Stability of Equilibria of Linear Time-Invariant Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I 2016, 63, 114–121,Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II 2019, 66, 642–646,Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 2018, 11, 1018.Montoya, O.D.; Gil-González, W.; Garrido, V.M. Voltage Stability Margin in DC Grids with CPLs: A Recursive Newton–Raphson Approximation. IEEE Trans. Circuits Syst. II 2019, 67, 300–304.Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Workshop on Engineering Applications; Chapter Applied Computer Sciences in Engineering; Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y., Eds.; Springer: Berlin, Germany, 2019; Volume 1052, pp. 552–564.Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.Xie, Y.; Chen, X.; Wu, Q.; Zhou, Q. Second-order conic programming model for load restoration considering uncertainty of load increment based on information gap decision theory. Int. J. Electr. Power Energy Syst. 2019, 105, 151–158.Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II 2019, 66, 1865–1869.Lavaei, J.; Low, S.H. Zero Duality Gap in Optimal Power Flow Problem. IEEE Trans. Power Syst. 2012, 27, 92–107Hindi, H. A tutorial on convex optimization. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 4, pp. 3252–3265.Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math Program 2003, 95, 3–51.Yuan, Z.; Hesamzadeh, M.R. Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. J. Mod. Power Syst. Clean Energy 2018, 7, 268–280.Luo, Z.Q.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 2006, 24, 1426–1438.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL99.pdf99.pdfArtículo principalapplication/pdf302797https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/1/99.pdf8724ab0e37c9679392e6e454cd9ea15dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT99.pdf.txt99.pdf.txtExtracted texttext/plain33019https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/4/99.pdf.txt414160062d4a69fe8547a9321f06c5e1MD54THUMBNAIL99.pdf.jpg99.pdf.jpgGenerated Thumbnailimage/jpeg91918https://repositorio.utb.edu.co/bitstream/20.500.12585/9553/5/99.pdf.jpg775ecd5bb8b3ed4137df1d0ca17aed2dMD5520.500.12585/9553oai:repositorio.utb.edu.co:20.500.12585/95532020-11-25 13:02:26.106Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=