Counting integers representable as images of polynomials modulo n

Given a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polyno...

Full description

Autores:
Arias, Fabián
Borja, Jerson
Rubio, Luis
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12340
Acceso en línea:
https://hdl.handle.net/20.500.12585/12340
https://cs.uwaterloo.ca/journals/JIS/
Palabra clave:
Diophantine Equation;
Number;
Linear Forms in Logarithms
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_021d8d45505024847ef83a0c47744cbf
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12340
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Counting integers representable as images of polynomials modulo n
title Counting integers representable as images of polynomials modulo n
spellingShingle Counting integers representable as images of polynomials modulo n
Diophantine Equation;
Number;
Linear Forms in Logarithms
LEMB
title_short Counting integers representable as images of polynomials modulo n
title_full Counting integers representable as images of polynomials modulo n
title_fullStr Counting integers representable as images of polynomials modulo n
title_full_unstemmed Counting integers representable as images of polynomials modulo n
title_sort Counting integers representable as images of polynomials modulo n
dc.creator.fl_str_mv Arias, Fabián
Borja, Jerson
Rubio, Luis
dc.contributor.author.none.fl_str_mv Arias, Fabián
Borja, Jerson
Rubio, Luis
dc.subject.keywords.spa.fl_str_mv Diophantine Equation;
Number;
Linear Forms in Logarithms
topic Diophantine Equation;
Number;
Linear Forms in Logarithms
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Given a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:24:19Z
dc.date.available.none.fl_str_mv 2023-07-21T16:24:19Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Arias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12340
dc.identifier.url.none.fl_str_mv https://cs.uwaterloo.ca/journals/JIS/
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Arias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12340
https://cs.uwaterloo.ca/journals/JIS/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Integer Sequences
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/1/1812.11599.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/4/1812.11599.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/5/1812.11599.pdf.jpg
bitstream.checksum.fl_str_mv 4e481d223cd1e4502c5200a5abfbd7e8
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
4dc77eabfc874e08318b30b456d31a62
51a7be2f724c4ca798cc66ed407e2424
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021797579849728
spelling Arias, Fabián510f8ed3-96f5-410f-81e4-c14e21e69c57Borja, Jerson6e810ab4-1ee6-4582-917f-958468bdb2fcRubio, Luis334955b7-098b-462f-9566-108e222a2ede2023-07-21T16:24:19Z2023-07-21T16:24:19Z20192023Arias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.https://hdl.handle.net/20.500.12585/12340https://cs.uwaterloo.ca/journals/JIS/Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarGiven a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Integer SequencesCounting integers representable as images of polynomials modulo ninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Diophantine Equation;Number;Linear Forms in LogarithmsLEMBCartagena de IndiasBurton, D.M. (2011) Elementary Number Theory. Cited 533 times. 7th ed., McGraw-HillBroughan, K.A. Characterizing the sum of two cubes (2003) Journal of Integer Sequences, 6 (4). Cited 5 times. http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.pdfBurns, R. (2017) Representing Numbers as the Sum of Squares and Powers in the Ring Zn, Preprint https://arxiv.org/abs/1708.03930Harrington, J., Jones, L., Lamarche, A. Representing integers as the sum of two squares in the ring ℤn (2014) Journal of Integer Sequences, 17 (7), art. no. 14.7.4. Cited 2 times. https://cs.uwaterloo.ca/journals/JIS/VOL17/Jones/jones14.pdfIreland, K., Rosen, M. (1990) A Classical Introduction to Modern Number Theory. Cited 1496 times. Second Edition, Springer-Verlaghttp://purl.org/coar/resource_type/c_6501ORIGINAL1812.11599.pdf1812.11599.pdfapplication/pdf206144https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/1/1812.11599.pdf4e481d223cd1e4502c5200a5abfbd7e8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1812.11599.pdf.txt1812.11599.pdf.txtExtracted texttext/plain38357https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/4/1812.11599.pdf.txt4dc77eabfc874e08318b30b456d31a62MD54THUMBNAIL1812.11599.pdf.jpg1812.11599.pdf.jpgGenerated Thumbnailimage/jpeg5191https://repositorio.utb.edu.co/bitstream/20.500.12585/12340/5/1812.11599.pdf.jpg51a7be2f724c4ca798cc66ed407e2424MD5520.500.12585/12340oai:repositorio.utb.edu.co:20.500.12585/123402023-07-22 00:18:05.798Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=