Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL

This paper presents an adaptive control to stabilize the output voltage of a DC–DC boost converter that feeds an unknown constant power load (CPL). The proposed controller employs passivity-based control (PBC), which assigns a desired system energy to compensate for the negative impedance that may b...

Full description

Autores:
Riffo, Sebastián
Gil-González, Walter
Montoya, Oscar Danilo
Restrepo, Carlos
Muñoz, Javier
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12164
Acceso en línea:
https://hdl.handle.net/20.500.12585/12164
Palabra clave:
Adaptive Control Design
Asymptotic Stability Convergence;
Hamiltonian Function;
Passivity-Based Control;
Sensorless Control Design;
Unknown Constant Power Load
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_021995266f89c0cd644f58f624b65b7e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12164
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
title Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
spellingShingle Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
Adaptive Control Design
Asymptotic Stability Convergence;
Hamiltonian Function;
Passivity-Based Control;
Sensorless Control Design;
Unknown Constant Power Load
LEMB
title_short Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
title_full Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
title_fullStr Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
title_full_unstemmed Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
title_sort Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL
dc.creator.fl_str_mv Riffo, Sebastián
Gil-González, Walter
Montoya, Oscar Danilo
Restrepo, Carlos
Muñoz, Javier
dc.contributor.author.none.fl_str_mv Riffo, Sebastián
Gil-González, Walter
Montoya, Oscar Danilo
Restrepo, Carlos
Muñoz, Javier
dc.subject.keywords.spa.fl_str_mv Adaptive Control Design
Asymptotic Stability Convergence;
Hamiltonian Function;
Passivity-Based Control;
Sensorless Control Design;
Unknown Constant Power Load
topic Adaptive Control Design
Asymptotic Stability Convergence;
Hamiltonian Function;
Passivity-Based Control;
Sensorless Control Design;
Unknown Constant Power Load
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper presents an adaptive control to stabilize the output voltage of a DC–DC boost converter that feeds an unknown constant power load (CPL). The proposed controller employs passivity-based control (PBC), which assigns a desired system energy to compensate for the negative impedance that may be generated by a CPL. A proportional-integral (PI) action that maintains a passive output is added to the PBC to impose the desired damping and enhance disturbance rejection behavior, thus forming a PI+PBC control. In addition, the proposed controller includes two estimators, i.e., immersion and invariance (I&I), and disturbance observer (DO), in order to estimate CPL and supply voltage for the converter, respectively. These observers become the proposed controller for an adaptive, sensorless PI+PBC control. Phase portrait analysis and experimental results have validated the robustness and effectiveness of the adaptive proposed control approach. These results show that the proposed controller adequately regulates the output voltage of the DC–DC boost converter under variations of the input voltage and CPL simultaneously. © 2022 by the authors.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T18:16:47Z
dc.date.available.none.fl_str_mv 2023-07-19T18:16:47Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Riffo S, Gil-González W, Montoya OD, Restrepo C, Muñoz J. Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL. Mathematics. 2022; 10(22):4321. https://doi.org/10.3390/math10224321
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12164
dc.identifier.doi.none.fl_str_mv 10.3390/math10224321
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Riffo S, Gil-González W, Montoya OD, Restrepo C, Muñoz J. Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL. Mathematics. 2022; 10(22):4321. https://doi.org/10.3390/math10224321
10.3390/math10224321
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12164
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Mathematics Volume 10, Issue 22November 2022 Article number 4321
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/1/mathematics-10-04321.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/4/mathematics-10-04321.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/5/mathematics-10-04321.pdf.jpg
bitstream.checksum.fl_str_mv e67cb357d6bb506c1a30c51961172263
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
4f714daf6b79bc533bd79082884c5514
707ffdeb97bcc17b8e89aafcfdedc2e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021614791032832
spelling Riffo, Sebastián78c68998-ded7-421c-ae1d-6d166007ceb8Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Restrepo, Carlosa8966bbc-cc11-4eee-90a4-a1be1cd069a4Muñoz, Javier30342f83-6fbc-4d72-ac53-694be5305e272023-07-19T18:16:47Z2023-07-19T18:16:47Z20222023Riffo S, Gil-González W, Montoya OD, Restrepo C, Muñoz J. Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL. Mathematics. 2022; 10(22):4321. https://doi.org/10.3390/math10224321https://hdl.handle.net/20.500.12585/1216410.3390/math10224321Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents an adaptive control to stabilize the output voltage of a DC–DC boost converter that feeds an unknown constant power load (CPL). The proposed controller employs passivity-based control (PBC), which assigns a desired system energy to compensate for the negative impedance that may be generated by a CPL. A proportional-integral (PI) action that maintains a passive output is added to the PBC to impose the desired damping and enhance disturbance rejection behavior, thus forming a PI+PBC control. In addition, the proposed controller includes two estimators, i.e., immersion and invariance (I&I), and disturbance observer (DO), in order to estimate CPL and supply voltage for the converter, respectively. These observers become the proposed controller for an adaptive, sensorless PI+PBC control. Phase portrait analysis and experimental results have validated the robustness and effectiveness of the adaptive proposed control approach. These results show that the proposed controller adequately regulates the output voltage of the DC–DC boost converter under variations of the input voltage and CPL simultaneously. © 2022 by the authors.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Mathematics Volume 10, Issue 22November 2022 Article number 4321Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPLinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Adaptive Control DesignAsymptotic Stability Convergence;Hamiltonian Function;Passivity-Based Control;Sensorless Control Design;Unknown Constant Power LoadLEMBCartagena de IndiasMathew, E.C., Das, A. Integration of renewable energy sources with MVDC network (2020) 9th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2020, art. no. 9379756. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9379328 ISBN: 978-172815672-9 doi: 10.1109/PEDES49360.2020.9379756Bharatee, A., Ray, P.K., Subudhi, B., Ghosh, A. Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review (2022) Energies, 15 (19), art. no. 7176. Cited 7 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197176Silani, A., Cucuzzella, M., Scherpen, J.M.A., Yazdanpanah, M.J. Robust output regulation for voltage control in DC networks with time-varying loads (2022) Automatica, 135, art. no. 109997. Cited 5 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/j.automatica.2021.109997Iskender, I., Genc, N. Power Electronic Converters in DC Microgrid (2020) Power Systems, pp. 115-137. Cited 7 times. www.springer.com/series/4622 doi: 10.1007/978-3-030-23723-3_6Ramos-Paja, C.A., Danilo-Montoya, O., Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller (2022) Electronics (Switzerland), 11 (18), art. no. 2923. Cited 3 times. www.mdpi.com/journal/electronics doi: 10.3390/electronics11182923Xie, D., Wang, L., Zhang, Z., Wang, S., Kang, L., Yao, J. Photovoltaic Energy Storage System Based on Bidirectional LLC Resonant Converter Control Technology (2022) Energies, 15 (17), art. no. 6436. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176436Prieto-Araujo, E., Bogdan Bolboceanu, D., Sanchez-Sanchez, E., Gomis-Bellmunt, O. Design methodology of the primary droop voltage control for DC microgrids (2017) 2017 IEEE 2nd International Conference on Direct Current Microgrids, ICDCM 2017, art. no. 8001097, pp. 529-535. Cited 3 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2017.8001097Gao, F., Kang, R., Cao, J., Yang, T. Primary and secondary control in DC microgrids: a review (2019) Journal of Modern Power Systems and Clean Energy, 7 (2), pp. 227-242. Cited 132 times. www.springer.com/40565 doi: 10.1007/s40565-018-0466-5Moayedi, S., Davoudi, A. Distributed Tertiary Control of DC Microgrid Clusters (2016) IEEE Transactions on Power Electronics, 31 (2), art. no. 7089280, pp. 1717-1733. Cited 223 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2015.2424672Oucheriah, S. Nonlinear control of the boost converter subject to unknown constant power load and parasitics (2023) International Journal of Electronics Letters, 11 (1), pp. 30-40. www.tandfonline.com/toc/tetl20/current doi: 10.1080/21681724.2021.2025438Emadi, A., Khaligh, A., Rivetta, C.H., Williamson, G.A. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives (2006) IEEE Transactions on Vehicular Technology, 55 (4), pp. 1112-1125. Cited 752 times. doi: 10.1109/TVT.2006.877483Shi, L., Lei, W., Li, Z., Huang, J., Cui, Y., Wang, Y. Bilinear Discrete-Time Modeling and Stability Analysis of the Digitally Controlled Dual Active Bridge Converter (2017) IEEE Transactions on Power Electronics, 32 (11), art. no. 7790849, pp. 8787-8799. Cited 64 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2016.2640659Chang, Y., Zhou, P., Niu, B., Wang, H., Xu, N., Alassafi, M.O., Ahmad, A.M. Switched-observer-based adaptive output-feedback control design with unknown gain for pure-feedback switched nonlinear systems via average dwell time (Open Access) (2021) International Journal of Systems Science, 52 (9), pp. 1731-1745. Cited 54 times. http://www.tandf.co.uk/journals/titles/00207721.asp doi: 10.1080/00207721.2020.1863503Zhang, H., Wang, H., Niu, B., Zhang, L., Ahmad, A.M. Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time (2021) Information Sciences, 580, pp. 756-774. Cited 75 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2021.08.062Chen, Q.-X., Chang, X.-H. Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack (Open Access) (2022) Applied Mathematics and Computation, 434, art. no. 127419. Cited 18 times. https://www.journals.elsevier.com/applied-mathematics-and-computation doi: 10.1016/j.amc.2022.127419Hamidi, S.A., Nasiri, A. Stability analysis of a DC–DC converter for battery energy storage system feeding CPL Proceedings of the 2015 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1-5. Cited 8 times. Osaka, Japan, 18–22 October 2015Singh, S., Fulwani, D., Kumar, V. Robust sliding-mode control of dc/dc boost converter feeding a constant power load (2015) IET Power Electronics, 8 (7), pp. 1230-1237. Cited 160 times. https://ietresearch.onlinelibrary.wiley.com/journal/17554543 doi: 10.1049/iet-pel.2014.0534Wu, J., Lu, Y. Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load (2019) IEEE Access, 7, art. no. 8689067, pp. 50797-50807. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2019.2910936Martinez-Treviño, B.A., El Aroudi, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L. Sliding-mode control of a boost converter under constant power loading conditions (Open Access) (2019) IET Power Electronics, 12 (3), pp. 521-529. Cited 48 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2018.5098He, W., Li, S., Yang, J., Wang, Z. Incremental passivity based control for DC-DC boost converter with circuit parameter perturbations using nonlinear disturbance observer (2016) IECON Proceedings (Industrial Electronics Conference), art. no. 7794073, pp. 1353-1358. Cited 12 times. ISBN: 978-150903474-1 doi: 10.1109/IECON.2016.7794073He, W., Li, S., Yang, J., Wang, Z. Incremental passivity based control for DC-DC boost converters under time-varying disturbances via a generalized proportional integral observer (Open Access) (2018) Journal of Power Electronics, 18 (1), pp. 147-169. Cited 16 times. http://www.jpe.or.kr/ doi: 10.6113/JPE.2018.18.1.147Farsizadeh, H., Gheisarnejad, M., Mosayebi, M., Rafiei, M., Khooban, M.H. An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (6), art. no. 8764402, pp. 1104-1108. Cited 42 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2928814He, W., Shang, Y. Finite-Time Parameter Observer-Based Sliding Mode Control for a DC/DC Boost Converter with Constant Power Loads (2022) Electronics (Switzerland), 11 (5), art. no. 819. Cited 6 times. https://www.mdpi.com/2079-9292/11/5/819/pdf doi: 10.3390/electronics11050819Zhang, X., He, W., Zhang, Y. An Adaptive Output Feedback Controller for Boost Converter (Open Access) (2022) Electronics (Switzerland), 11 (6), art. no. 905. Cited 5 times. https://www.mdpi.com/2079-9292/11/6/905/pdf doi: 10.3390/electronics11060905Zhang, X., Martinez-Lopez, M., He, W., Shang, Y., Jiang, C., Moreno-Valenzuela, J. Sensorless control for dc–dc boost converter via generalized parameter estimation-based observer (2021) Applied Sciences (Switzerland), 11 (16), art. no. 7761. Cited 11 times. https://www.mdpi.com/2076-3417/11/16/7761/pdf doi: 10.3390/app11167761Serra, F., Magaldi, G., Martin Fernandez, L., Guillermo, L., De Angelo, C. IDA-PBC controller of a DC-DC boost converter for continuous and discontinuous conduction mode (Open Access) (2018) IEEE Latin America Transactions, 16 (1), pp. 52-58. Cited 9 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2018.8291454Gil-González, W., Montoya, O.D., Espinosa-Perez, G. Adaptive control for second-order DC-DC converters: PBC approach (Open Access) (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 289-310. Cited 5 times. https://www.sciencedirect.com/book/9780128221013 ISBN: 978-012822101-3; 978-012822102-0 doi: 10.1016/B978-0-12-822101-3.00016-2AL-Nussairi, M.K., Bayindir, R., Padmanaban, S., Mihet-Popa, L., Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques (Open Access) (2017) Energies, 10 (10), art. no. 1656. Cited 98 times. http://www.mdpi.com/1996-1073/10/10/1656/pdf doi: 10.3390/en10101656Ortega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J. (2013) Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Cited 1779 times. Springer Science & Business Media, Berlin/Heidelberg, GermanyOrtega, R., van der Schaft, A., Castaños, F., Astolfi, A. Control by interconnection and standard passivity-based control of port-hamiltonian systems (Open Access) (2008) IEEE Transactions on Automatic Control, 53 (11), pp. 2527-2542. Cited 263 times. doi: 10.1109/TAC.2008.2006930Harandi, M.R.J., Taghirad, H.D. On the matching equations of kinetic energy shaping in IDA-PBC (Open Access) (2021) Journal of the Franklin Institute, 358 (16), pp. 8639-8655. Cited 5 times. https://www.journals.elsevier.com/journal-of-the-franklin-institute doi: 10.1016/j.jfranklin.2021.08.034Cisneros, R., Gao, R., Ortega, R., Husain, I. A PI+passivity-based control of a wind energy conversion system enabled with a solid-state transformer (Open Access) (2021) International Journal of Control, 94 (9), pp. 2453-2463. Cited 3 times. www.tandf.co.uk/journals/titles/00207179.asp doi: 10.1080/00207179.2019.1710768Krstic, M., Kokotovic, P.V., Kanellakopoulos, I. (1995) Nonlinear and Adaptive Control Design. Cited 9817 times. John Wiley & Sons Inc., Hoboken, NJ, USAhttp://purl.org/coar/resource_type/c_6501ORIGINALmathematics-10-04321.pdfmathematics-10-04321.pdfapplication/pdf5849442https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/1/mathematics-10-04321.pdfe67cb357d6bb506c1a30c51961172263MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmathematics-10-04321.pdf.txtmathematics-10-04321.pdf.txtExtracted texttext/plain39319https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/4/mathematics-10-04321.pdf.txt4f714daf6b79bc533bd79082884c5514MD54THUMBNAILmathematics-10-04321.pdf.jpgmathematics-10-04321.pdf.jpgGenerated Thumbnailimage/jpeg7722https://repositorio.utb.edu.co/bitstream/20.500.12585/12164/5/mathematics-10-04321.pdf.jpg707ffdeb97bcc17b8e89aafcfdedc2e0MD5520.500.12585/12164oai:repositorio.utb.edu.co:20.500.12585/121642023-07-20 00:17:47.504Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=