Optimal design of transmission shafts: A continuous genetic algorithm approach

This paper presents an analysis of the optimal design of transmission shafts by adopting the approach of a novel continuous genetic algorithm. The optimization case study is formulated as a single-objective optimization problem whose objective function is the minimization of the total weight that re...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9181
Acceso en línea:
https://hdl.handle.net/20.500.12585/9181
Palabra clave:
Genetic algorithm
Mechanical design
Non-linear equations
Optimization�
Shaft design
Simulation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0188e742eca7450c6dc40274db37af45
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9181
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal design of transmission shafts: A continuous genetic algorithm approach
title Optimal design of transmission shafts: A continuous genetic algorithm approach
spellingShingle Optimal design of transmission shafts: A continuous genetic algorithm approach
Genetic algorithm
Mechanical design
Non-linear equations
Optimization�
Shaft design
Simulation
title_short Optimal design of transmission shafts: A continuous genetic algorithm approach
title_full Optimal design of transmission shafts: A continuous genetic algorithm approach
title_fullStr Optimal design of transmission shafts: A continuous genetic algorithm approach
title_full_unstemmed Optimal design of transmission shafts: A continuous genetic algorithm approach
title_sort Optimal design of transmission shafts: A continuous genetic algorithm approach
dc.subject.keywords.none.fl_str_mv Genetic algorithm
Mechanical design
Non-linear equations
Optimization�
Shaft design
Simulation
topic Genetic algorithm
Mechanical design
Non-linear equations
Optimization�
Shaft design
Simulation
description This paper presents an analysis of the optimal design of transmission shafts by adopting the approach of a novel continuous genetic algorithm. The optimization case study is formulated as a single-objective optimization problem whose objective function is the minimization of the total weight that results from the sum of all the sections in the shaft. Additionally,mechanical stresses and constructive characteristics are considered constraints in this case. The proposed optimization modelcorresponds to a nonlinear non-convex optimization problem which is numerically solved with a continuous variant of genetic algorithms. SKYCIV®and Autodesk Inventor®were used to verify the quality and robustness of the numerical results in this paper by means of simulation tools and analysis. The results obtained demonstrates that the methodology proposed reduce the complexity and improving the results obtained in comparison to conventional mechanical design. © 2019 International Academic Press.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:09Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:09Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Statistics, Optimization and Information Computing; Vol. 7, Núm. 4; pp. 802-815
dc.identifier.issn.none.fl_str_mv 2311004X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9181
dc.identifier.doi.none.fl_str_mv 10.19139/soic-2310-5070-641
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57208634458
55791991200
57212511520
56919564100
identifier_str_mv Statistics, Optimization and Information Computing; Vol. 7, Núm. 4; pp. 802-815
2311004X
10.19139/soic-2310-5070-641
Universidad Tecnológica de Bolívar
Repositorio UTB
57208634458
55791991200
57212511520
56919564100
url https://hdl.handle.net/20.500.12585/9181
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Academic Press
publisher.none.fl_str_mv International Academic Press
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076918825&doi=10.19139%2fsoic-2310-5070-641&partnerID=40&md5=b9f1135d1c1f1c64575dd0ed19b55a11
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9181/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021566876352512
spelling 2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Statistics, Optimization and Information Computing; Vol. 7, Núm. 4; pp. 802-8152311004Xhttps://hdl.handle.net/20.500.12585/918110.19139/soic-2310-5070-641Universidad Tecnológica de BolívarRepositorio UTB57208634458557919912005721251152056919564100This paper presents an analysis of the optimal design of transmission shafts by adopting the approach of a novel continuous genetic algorithm. The optimization case study is formulated as a single-objective optimization problem whose objective function is the minimization of the total weight that results from the sum of all the sections in the shaft. Additionally,mechanical stresses and constructive characteristics are considered constraints in this case. The proposed optimization modelcorresponds to a nonlinear non-convex optimization problem which is numerically solved with a continuous variant of genetic algorithms. SKYCIV®and Autodesk Inventor®were used to verify the quality and robustness of the numerical results in this paper by means of simulation tools and analysis. The results obtained demonstrates that the methodology proposed reduce the complexity and improving the results obtained in comparison to conventional mechanical design. © 2019 International Academic Press.Recurso electrónicoapplication/pdfengInternational Academic Presshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076918825&doi=10.19139%2fsoic-2310-5070-641&partnerID=40&md5=b9f1135d1c1f1c64575dd0ed19b55a11Optimal design of transmission shafts: A continuous genetic algorithm approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Genetic algorithmMechanical designNon-linear equationsOptimization�Shaft designSimulationRodriguez-Cabal M.A.Grisales-Noreña, Luis FernandoArdila Maŕn J.Montoya O.D.Mott, R.L., Machine elements in mechanical design. (1991)Alguliyev, R.M., Aliguliyev, R.M., Abdullayeva, F.J., ""PSO+K-means Algorithm for Anomaly Detection in Big Data,"" Statistics,Optimization and Information Computing (2019), 7 (2), pp. 348-359Elanchezhian, C., Vijaya Ramnath, B., Sripada Raghavendra, K.N., Muralidharan, M., Rekha, G., Design and Comparison of the Strength and Efficiency of Drive Shaft made of Steel and Composite Materials. (2018) Materials Today: Proceedings, 5 (1), pp. 1000-1007. , https://doi.org/10.1016/j.matpr.2017.11.176Reddy, K., Nagaraju, C., Weight optimization and Finite Element Analysis of Composite automotive drive shaft for Maximum Stiffness,Materials Today: Proceedings (2017), 4 (2), pp. 2390-2396. , https://doi.org/10.1016/j.matpr.2017.02.088Koechlin, S., Dehmani, H., Kulcsár, G., Strength of a pinion-motor shaft connection: Computational and experimental assessment. (2017) Procedia Engineering, 213, pp. 477-487. , https://doi.org/10.1016/j.proeng.2018.02.047Grisales-Noreña, L.F., Diseño Y Operación De Sistemas De Distribución Bajo Un Ambiente De Redes Inteligentes. (2015)Garcia, Á., Tecnicas metaheurísticas (2013) UPMGuedria, N., Improved accelerated PSO algorithm for mechanical engineering optimization problems, Applied Soft Computing Journal , 40, pp. 455-467. , https://doi.org/10.1016/j.asoc.2015.10.048Husseinzadeh Kashan, A., An efficient algorithm for constrained global optimization and application to mechanical engineering design (2011) League championship algorithm (LCA), CAD Computer Aided Design, 43 (12), pp. 1769-1792. , https://doi.org/10.1016/j.cad.2011.07.003De Melo, V., Carosio, G.L., Investigating Multi-View Differential Evolution for solving constrained engineering design problems. (2013) Expert Systems with Applications, 40 (9), pp. 3370-3377. , https://doi.org/10.1016/j.eswa.2012.12.045Lampinen, J., Cam shape optimisation by genetic algorithm. (2003) CAD Computer Aided Design, 35 (8), pp. 727-737. , https://doi.org/10.1016/S0010-4485(03)00004-6Abdelsalam, A.M., El-Shorbagy, M.A., Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. (2018) Renewable Energy, 123, pp. 748-755. , Https://Doi.Org/10.1016/J.Renene.2018.02.083urlGallego, R.A., Escobar, A.H., Toro, E.M., Tecnicas metaheurísticas de optimización, (2nd ed.). (2008) Pereira: Universidad Tecnológica de Pereira.Mastorakis, N.E., Solving Non-linear Equations via Genetic Algorithms. (2005) Proceedings of the 6th WSEAS International Conference on Evolutionary Computing, 2005, pp. 24-28Norton, R.L., Disẽo de máquinas (1st ed.). (1999) Prentice HallSchaeffler, K.G., Rodamientos FAG. (2009)Hibbeler, R.C., Mecánica de materiales (Sexta Edic). (2006) Mexico: Prentice Hall.Giri, C., Tipparthi, D.K.R., Chattopadhyay, S., A genetic algorithm based approach for system-on-chip test scheduling using dual speed TAM with power constraint. (2008) WSEAS Transactions on Circuits and Systems, 7 (5), pp. 416-427Guzmán, M.A., Delgado, A., Optimización de la geometría de un eje aplicando algoritmos genéticos.Ingeniería e Investigación (2005), 25 (2), pp. 15-23Gebze, K., Genetic Algorithm based Feature Selection in High Dimensional Text Dataset Classification (2015), 12AISI 1040 Steel, cold drawn. (2018), http://www.matweb.com/search/DataSheet.aspx?MatGUID=39ca4b70ec2844b888d999e3753be83a&ckck=1Beer, F.P., Jhonston, E.R.J., Mecanica Vectorial Para Ingenieros ""Estatica"" (6th ed.). (1997) McGRAW-HILL.Comino, P., Carigliano, S., Free Beam Calculator. (2013), https://skyciv.com/es/free-beam-calculator/Souza, S.S.F., Romero, R., Pereira, J., Saraiva, J.T., Specialized Genetic Algorithm of Chu-Beasley Applied Considering Several Demand Scenarios, (2015) IEEE Eindhoven PowerTechSingh, N., Dhir, V., ""Hypercube Based Genetic Algorithm for Efficient VM Migration for Energy Reduction in Cloud Computing,""Statistics, Optimization and Information Computing (2019), 7, pp. 468-485http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9181/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9181oai:repositorio.utb.edu.co:20.500.12585/91812023-05-26 11:15:27.412Repositorio Institucional UTBrepositorioutb@utb.edu.co