Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning

The problem of phase unwrapping from a noisy and also incomplete wrapped phase map arises in many optics and image processing applications. In this work, we propose a noise-robust approach for processing regional phase dislocations. Our approach combines phase unwrapping and sparse-based inpainting...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9155
Acceso en línea:
https://hdl.handle.net/20.500.12585/9155
Palabra clave:
3-D Reconstruction
Dictionary Learning
Image restoration
Phase unwrapping
Sparse representation
Gaussian noise (electronic)
Optical data processing
Restoration
Vision
White noise
3D reconstruction
Additive White Gaussian noise
Dictionary learning
Fringe projection profilometry
Image processing applications
Phase unwrapping
Sparse representation
Wrapped phase map
Image reconstruction
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_01080c4c7233e8590cbd5d99fb5f3e42
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9155
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
title Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
spellingShingle Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
3-D Reconstruction
Dictionary Learning
Image restoration
Phase unwrapping
Sparse representation
Gaussian noise (electronic)
Optical data processing
Restoration
Vision
White noise
3D reconstruction
Additive White Gaussian noise
Dictionary learning
Fringe projection profilometry
Image processing applications
Phase unwrapping
Sparse representation
Wrapped phase map
Image reconstruction
title_short Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
title_full Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
title_fullStr Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
title_full_unstemmed Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
title_sort Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learning
dc.subject.keywords.none.fl_str_mv 3-D Reconstruction
Dictionary Learning
Image restoration
Phase unwrapping
Sparse representation
Gaussian noise (electronic)
Optical data processing
Restoration
Vision
White noise
3D reconstruction
Additive White Gaussian noise
Dictionary learning
Fringe projection profilometry
Image processing applications
Phase unwrapping
Sparse representation
Wrapped phase map
Image reconstruction
topic 3-D Reconstruction
Dictionary Learning
Image restoration
Phase unwrapping
Sparse representation
Gaussian noise (electronic)
Optical data processing
Restoration
Vision
White noise
3D reconstruction
Additive White Gaussian noise
Dictionary learning
Fringe projection profilometry
Image processing applications
Phase unwrapping
Sparse representation
Wrapped phase map
Image reconstruction
description The problem of phase unwrapping from a noisy and also incomplete wrapped phase map arises in many optics and image processing applications. In this work, we propose a noise-robust approach for processing regional phase dislocations. Our approach combines phase unwrapping and sparse-based inpainting with dictionary learning to recover the continuous phase map. The method is validated both using numerically simulated data with strong additive white Gaussian noise and phase dislocations; and experimental data from fringe projection profilometry. Comparisons with other phase inpainting method referred to as PULSI+INTERP, show the suitability of the proposed method for phase restoration even in extremely noisy phases. The error given by the proposed method on the highest level of noise (RMSE=0.0269 Rad) remains the smallest compared to the error given by PULSI+INTERP for noise-free data (RMSE=0.0332 Rad). © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:05Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:05Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
dc.identifier.isbn.none.fl_str_mv 9781728114910
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9155
dc.identifier.doi.none.fl_str_mv 10.1109/STSIVA.2019.8730228
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57192270016
57204065355
57209542195
36142156300
24329839300
identifier_str_mv 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings
9781728114910
10.1109/STSIVA.2019.8730228
Universidad Tecnológica de Bolívar
Repositorio UTB
57192270016
57204065355
57209542195
36142156300
24329839300
url https://hdl.handle.net/20.500.12585/9155
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 24 April 2019 through 26 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068049480&doi=10.1109%2fSTSIVA.2019.8730228&partnerID=40&md5=ace3337238ede20ac95bd15a31d715d3
Scopus2-s2.0-85068049480
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9155/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021676666454016
spelling 2020-03-26T16:33:05Z2020-03-26T16:33:05Z20192019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings9781728114910https://hdl.handle.net/20.500.12585/915510.1109/STSIVA.2019.8730228Universidad Tecnológica de BolívarRepositorio UTB5719227001657204065355572095421953614215630024329839300The problem of phase unwrapping from a noisy and also incomplete wrapped phase map arises in many optics and image processing applications. In this work, we propose a noise-robust approach for processing regional phase dislocations. Our approach combines phase unwrapping and sparse-based inpainting with dictionary learning to recover the continuous phase map. The method is validated both using numerically simulated data with strong additive white Gaussian noise and phase dislocations; and experimental data from fringe projection profilometry. Comparisons with other phase inpainting method referred to as PULSI+INTERP, show the suitability of the proposed method for phase restoration even in extremely noisy phases. The error given by the proposed method on the highest level of noise (RMSE=0.0269 Rad) remains the smallest compared to the error given by PULSI+INTERP for noise-free data (RMSE=0.0332 Rad). © 2019 IEEE.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 538871552485IEEE Colombia Section;IEEE Signal Processing Society Colombia Chapter;Universidad Industrial de SantanderThis work has been partly funded by Colciencias project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. J. Pineda and J. Meza thank Universidad Tecnológica de Bolívar for a Masters degree scholarship.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068049480&doi=10.1109%2fSTSIVA.2019.8730228&partnerID=40&md5=ace3337238ede20ac95bd15a31d715d3Scopus2-s2.0-8506804948022nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019Noise-Robust Processing of Phase Dislocations using Combined Unwrapping and Sparse Inpainting with Dictionary Learninginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94f3-D ReconstructionDictionary LearningImage restorationPhase unwrappingSparse representationGaussian noise (electronic)Optical data processingRestorationVisionWhite noise3D reconstructionAdditive White Gaussian noiseDictionary learningFringe projection profilometryImage processing applicationsPhase unwrappingSparse representationWrapped phase mapImage reconstruction24 April 2019 through 26 April 2019Pineda J.Meza J.Barrios E.M.Romero L.A.Marrugo A.G.Gorthi, S.S., Rastogi, P., Fringe projection techniques: Whither we are? (2010) Optics and Lasers in Engineering, 48, pp. 133-140. , IMACREVIEW-2009-001Bone, D.J., Fourier fringe analysis: The two-dimensional phase unwrapping problem (1991) Applied Optics, 30 (25), pp. 3627-3632Gdeisat, M.A., Burton, D.R., Lilley, F., Arevalillo-Herráez, M., Ammous, M.M.M., Aiding phase unwrapping by increasing the number of residues in two-dimensional wrapped-phase distributions (2015) Applied Optics, 54, pp. 10073-10078. , DecPineda, J., Vargas, R., Romero, L.A., Meneses, J., Marrugo, A.G., Fringe quality map for fringe projection profilometry in LabVIEW (2018) Opt. Pura Apl., 51, pp. 503021-503028. , DecZhao, M., Huang, L., Zhang, Q., Su, X., Asundi, A., Kemao, Q., Quality-guided phase unwrapping technique: Comparison of quality maps and guiding strategies (2011) Applied Optics, 50 (33), pp. 6214-6224Xu, J., An, D., Huang, X., Yi, P., An efficient minimumdiscontinuity phase-unwrapping method (2016) IEEE Geoscience and Remote Sensing Letters, 13 (5), pp. 666-670Yu, H., Lan, Y., Xu, J., An, D., Lee, H., Large-scale L0-norm and L1-norm 2-d phase unwrapping (2017) IEEE Transactions on Geoscience and Remote Sensing, 55, pp. 4712-4728. , AugXia, H., Montresor, S., Guo, R., Li, J., Olchewsky, F., Desse, J.-M., Picart, P., Robust processing of phase dislocations based on combined unwrapping and inpainting approaches (2017) Optics Letters, 42 (2), pp. 322-325Xia, H., Montresor, S., Picart, P., Guo, R., Li, J., Comparative analysis for combination of unwrapping and de-noising of phase data with high speckle decorrelation noise (2018) Optics and Lasers in Engineering, 107, pp. 71-77Meng, L., Fang, S., Yang, P., Wang, L., Komori, M., Kubo, A., Image-inpainting and quality-guided phase unwrapping algorithm (2012) Applied Optics, 51 (13), pp. 2457-2462Xia, H.-T., Guo, R.-X., Fan, Z.-B., Cheng, H.-M., Yang, B.-C., Non-invasive mechanical measurement for transparent objects by digital holographic interferometry based on iterative leastsquares phase unwrapping (2012) Experimental Mechanics, 52 (4), pp. 439-445Xia, H., Montresor, S., Guo, R., Li, J., Yan, F., Cheng, H., Picart, P., Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise (2016) Optics Express, 24 (25), pp. 28713-28730Huang, K., Aviyente, S., Sparse representation for signal classification (2007) Advances in Neural Information Processing Systems, pp. 609-616Bruckstein, A.M., Donoho, D.L., Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images (2009) SIAM Review, 51 (1), pp. 34-81Manat, S., Zhang, Z., Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451Tibshirani, R., Regression shrinkage and selection via the lasso (1996) Journal of the Royal Statistical Society. Series B (Methodological, pp. 267-288Rubinstein, R., Peleg, T., Elad, M., Analysis k-SVD: A dictionary-learning algorithm for the analysis sparse model (2013) IEEE Transactions on Signal Processing, 61 (3), pp. 661-677Elad, M., Starck, J.-L., Querre, P., Donoho, D.L., Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) (2005) Applied and Computational Harmonic Analysis, 19 (3), pp. 340-358Yang, J., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation (2010) IEEE Transactions on Image Processing, 19 (11), pp. 2861-2873Zhang, J., Zhao, D., Gao, W., Group-based sparse representation for image restoration (2014) IEEE Transactions on Image Processing, 23 (8), pp. 3336-3351Kwok, T.-H., Wang, C.C., Interactive image inpainting using dct based exemplar matching (2009) International Symposium on Visual Computing, pp. 709-718. , SpringerElad, M., Aharon, M., Image denoising via learned dictionaries and sparse representation (2006) 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 1, pp. 895-900. , IEEEGuleryuz, O.G., Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part i: Theory (2006) IEEE Transactions on Image Processing, 15 (3), pp. 539-554http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9155/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9155oai:repositorio.utb.edu.co:20.500.12585/91552021-02-02 14:44:04.584Repositorio Institucional UTBrepositorioutb@utb.edu.co