Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection
The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8944
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8944
- Palabra clave:
- Muscle fatigue
Semg
Wavelet transform
Bioinformatics
Discrete wavelet transforms
Muscle
Signal analysis
Signal processing
Signal reconstruction
Muscle fatigues
Muscular contraction
Muscular fatigues
Noise filtering
Semg
Semg signals
Wavelet transforms
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_00010955f36b3d84ab7c4ef789ff5804 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8944 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
spelling |
Lepore N.Brieva J.Garcia J.D.Romero E.Flórez-Prias L.A.Contreras Ortiz, Sonia Helena2020-03-26T16:32:38Z2020-03-26T16:32:38Z2017Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1057297815106163320277786Xhttps://hdl.handle.net/20.500.12585/894410.1117/12.2285950Universidad Tecnológica de BolívarRepositorio UTB5719985778457210822856The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels. © 2017 SPIE.Medical Image Computing and Computer Assisted Intervention (MICCAI);SIPAIM Foundation;Universidad Nacional de Colombia;Universidad Nacional de Colombia, Direccion de Relaciones ExterioresRecurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85038430967&doi=10.1117%2f12.2285950&partnerID=40&md5=ce5142fe15a705014ee3f0d3a8bdcbb3Scopus2-s2.0-8503843096713th International Conference on Medical Information Processing and Analysis, SIPAIM 2017Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detectioninfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fMuscle fatigueSemgWavelet transformBioinformaticsDiscrete wavelet transformsMuscleSignal analysisSignal processingSignal reconstructionMuscle fatiguesMuscular contractionMuscular fatiguesNoise filteringSemgSemg signalsWavelet transforms5 October 2017 through 7 October 2017Martínez, J.A., Fatiga tipos y causas (2013) Rev. Cub. Med. Dep. & Cul. Fisica, 8 (3), pp. 1-14Phinyomark, A., Feature reduction and selection for EMG signal classification (2012) Elsevier, 39 (8), pp. 7420-7431Correa, J.L., Morales, E., Huerta, J.A., Gonzalez, J.J., Cardenas, C.R., Sistema de adquisición de señales semg para la detección de fatiga muscular (2016) Rev. Mex. de Ing. Biomedica, 37 (1), pp. 17-27Yochum, M., Bakir, T., Lepers, R., Binczak, S., Estimation of muscular fatigue under electromyostimulation using cwt (2012) IEEE Trans. on Bio. Engineering, 59 (12), pp. 3372-3378Hussain, M.S., Mamun, M., Effectiveness of the wavelet transform on the surface Emg to understand the muscle fatigue during walk (2012) Measure. Sci. Review, 12 (1), pp. 28-33Chowdhury, R.H., Reaz, M.B.I., Bin Mohd, M.A., Chellappan, K., Chang, T.G., Surface electromyography signal processing and classification techniques (2013) Mdpi Jour. Sensors, 13 (17), pp. 12431-12466Montoya, M., Surface EMG based muscle fatigue detection using a low-cost wearable sensor and amplitude frequency analysis (2015) Conf. Int. de Ingeniería, 1 (1), pp. 29-33Al-Qazzaz, N., Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task (2015) Mdpi Jour. Sensors, 15 (11), pp. 29015-29035http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8944/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8944oai:repositorio.utb.edu.co:20.500.12585/89442023-05-25 15:52:47.478Repositorio Institucional UTBrepositorioutb@utb.edu.co |
dc.title.none.fl_str_mv |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
title |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
spellingShingle |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection Muscle fatigue Semg Wavelet transform Bioinformatics Discrete wavelet transforms Muscle Signal analysis Signal processing Signal reconstruction Muscle fatigues Muscular contraction Muscular fatigues Noise filtering Semg Semg signals Wavelet transforms |
title_short |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
title_full |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
title_fullStr |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
title_full_unstemmed |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
title_sort |
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection |
dc.contributor.editor.none.fl_str_mv |
Lepore N. Brieva J. Garcia J.D. Romero E. |
dc.subject.keywords.none.fl_str_mv |
Muscle fatigue Semg Wavelet transform Bioinformatics Discrete wavelet transforms Muscle Signal analysis Signal processing Signal reconstruction Muscle fatigues Muscular contraction Muscular fatigues Noise filtering Semg Semg signals Wavelet transforms |
topic |
Muscle fatigue Semg Wavelet transform Bioinformatics Discrete wavelet transforms Muscle Signal analysis Signal processing Signal reconstruction Muscle fatigues Muscular contraction Muscular fatigues Noise filtering Semg Semg signals Wavelet transforms |
description |
The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels. © 2017 SPIE. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:38Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:38Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10572 |
dc.identifier.isbn.none.fl_str_mv |
9781510616332 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8944 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2285950 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57199857784 57210822856 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10572 9781510616332 0277786X 10.1117/12.2285950 Universidad Tecnológica de Bolívar Repositorio UTB 57199857784 57210822856 |
url |
https://hdl.handle.net/20.500.12585/8944 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
5 October 2017 through 7 October 2017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038430967&doi=10.1117%2f12.2285950&partnerID=40&md5=ce5142fe15a705014ee3f0d3a8bdcbb3 Scopus2-s2.0-85038430967 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
13th International Conference on Medical Information Processing and Analysis, SIPAIM 2017 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8944/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021576251670528 |