Sensitivity analysis: matrix methods in demography and ecology
Sensitivity analysis addresses one of the most persistent of all questions: what would happen if ? Within the field of demography, sensitivity analysis might be said to have originated with the groundbreaking, yet very different, papers of Hamilton (1966) and Keyfitz (1971). Hamilton calculated the...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/15865
- Palabra clave:
- Demography
Ecology
Sensitivity analysis
Ciencias sociales
Ecología humana
Demografía
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_ff4f9f9b44a7e5412c0a1875aa072d86 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/15865 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sensitivity analysis: matrix methods in demography and ecology |
title |
Sensitivity analysis: matrix methods in demography and ecology |
spellingShingle |
Sensitivity analysis: matrix methods in demography and ecology Demography Ecology Sensitivity analysis Ciencias sociales Ecología humana Demografía |
title_short |
Sensitivity analysis: matrix methods in demography and ecology |
title_full |
Sensitivity analysis: matrix methods in demography and ecology |
title_fullStr |
Sensitivity analysis: matrix methods in demography and ecology |
title_full_unstemmed |
Sensitivity analysis: matrix methods in demography and ecology |
title_sort |
Sensitivity analysis: matrix methods in demography and ecology |
dc.subject.spa.fl_str_mv |
Demography Ecology Sensitivity analysis |
topic |
Demography Ecology Sensitivity analysis Ciencias sociales Ecología humana Demografía |
dc.subject.lemb.spa.fl_str_mv |
Ciencias sociales Ecología humana Demografía |
description |
Sensitivity analysis addresses one of the most persistent of all questions: what would happen if ? Within the field of demography, sensitivity analysis might be said to have originated with the groundbreaking, yet very different, papers of Hamilton (1966) and Keyfitz (1971). Hamilton calculated the sensitivity of the intrinsic rate of increase, r, to changes in age-specific mortality. He interpreted r as a measure of individual fitness, capturing the effects of the phenotype on mortality and fertility. The resulting sensitivities are measures of the strength of natural selection on aging and senescence. Keyfitz calculated sensitivities of population growth rate, life expectancy, and other quantities. Taking a demographic perspective, he interpreted the results as showing the linkage between age-specific rates at the individual level and the “intrinsic” rates expressed at the population level. Both these perspectives on sensitivity analysis continue to play major roles in demography and population biology. Connecting traits to individual rates, and those rates to measures of fitness, is the foundation of evolutionary demography. Understanding linkages between individual rates and population outcomes informs population projections, policy and spending, conservation, health demography, ecotoxicology, and so on. Fast forward to today. The diversity of demographic models, of the outcomes that can be calculated, and the power of the mathematical tools available to analyze them far exceed those of 50 years ago. Much of this progress is due to the formulation of demographic models in terms of matrices. P. H. Leslie formulated matrix models in the 1940s (Leslie 1945), but they were mostly ignored for two decades until revitalized by a series of studies in the 1960s (Keyfitz 1964; Lefkovitch 1965; Rogers 1968). In the very first issue of the first volume of the new journal Demography, Nathan Keyfitz described population projection as a matrix operator (Keyfitz 1964). This book relies on matrix formulations generalized beyond projections to age-structured and stage-structured populations, to linear and nonlinear dynamics, to time-invariant and time-varying vital rates, and to multistate models that combine age and stage information. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-11-20T17:21:02Z |
dc.date.available.none.fl_str_mv |
2020-11-20T17:21:02Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.isbn.none.fl_str_mv |
978-3-030-10534-1 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/15865 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-10534-1 |
identifier_str_mv |
978-3-030-10534-1 |
url |
http://hdl.handle.net/20.500.12010/15865 https://doi.org/10.1007/978-3-030-10534-1 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
308 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/1/1007058.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/3/1007058.pdf.jpg |
bitstream.checksum.fl_str_mv |
fc592c4b2addd3b8e80d4a8a334fddbc abceeb1c943c50d3343516f9dbfc110f 60defdc53bd58a9104fbb217e88a8717 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213845378400256 |
spelling |
2020-11-20T17:21:02Z2020-11-20T17:21:02Z2018978-3-030-10534-1http://hdl.handle.net/20.500.12010/15865https://doi.org/10.1007/978-3-030-10534-1Sensitivity analysis addresses one of the most persistent of all questions: what would happen if ? Within the field of demography, sensitivity analysis might be said to have originated with the groundbreaking, yet very different, papers of Hamilton (1966) and Keyfitz (1971). Hamilton calculated the sensitivity of the intrinsic rate of increase, r, to changes in age-specific mortality. He interpreted r as a measure of individual fitness, capturing the effects of the phenotype on mortality and fertility. The resulting sensitivities are measures of the strength of natural selection on aging and senescence. Keyfitz calculated sensitivities of population growth rate, life expectancy, and other quantities. Taking a demographic perspective, he interpreted the results as showing the linkage between age-specific rates at the individual level and the “intrinsic” rates expressed at the population level. Both these perspectives on sensitivity analysis continue to play major roles in demography and population biology. Connecting traits to individual rates, and those rates to measures of fitness, is the foundation of evolutionary demography. Understanding linkages between individual rates and population outcomes informs population projections, policy and spending, conservation, health demography, ecotoxicology, and so on. Fast forward to today. The diversity of demographic models, of the outcomes that can be calculated, and the power of the mathematical tools available to analyze them far exceed those of 50 years ago. Much of this progress is due to the formulation of demographic models in terms of matrices. P. H. Leslie formulated matrix models in the 1940s (Leslie 1945), but they were mostly ignored for two decades until revitalized by a series of studies in the 1960s (Keyfitz 1964; Lefkovitch 1965; Rogers 1968). In the very first issue of the first volume of the new journal Demography, Nathan Keyfitz described population projection as a matrix operator (Keyfitz 1964). This book relies on matrix formulations generalized beyond projections to age-structured and stage-structured populations, to linear and nonlinear dynamics, to time-invariant and time-varying vital rates, and to multistate models that combine age and stage information.308application/pdfengSpringerDemographyEcologySensitivity analysisCiencias socialesEcología humanaDemografíaSensitivity analysis: matrix methods in demography and ecologyAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2http://purl.org/coar/resource_type/c_2f33Caswell, HalORIGINAL1007058.pdf1007058.pdfVer libroapplication/pdf4775096https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/1/1007058.pdffc592c4b2addd3b8e80d4a8a334fddbcMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAIL1007058.pdf.jpg1007058.pdf.jpgIM Thumbnailimage/jpeg16292https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/15865/3/1007058.pdf.jpg60defdc53bd58a9104fbb217e88a8717MD53open access20.500.12010/15865oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/158652020-11-20 12:21:58.683open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |