Floquet Theory for a Class of Periodic Evolution Equations in an Lp-Setting
In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain,...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2010
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/17579
- Acceso en línea:
- https://directory.doabooks.org/handle/20.500.12854/47753
http://hdl.handle.net/20.500.12010/17579
- Palabra clave:
- Bloch solution
Lp setting
Floquet theory
Ecuaciones
Ecuaciones - Soluciones numéricas
Cálculo diferencial
- Rights
- License
- Abierto (Texto Completo)
Summary: | In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions. |
---|