Floquet Theory for a Class of Periodic Evolution Equations in an Lp-Setting

In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain,...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2010
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/17579
Acceso en línea:
https://directory.doabooks.org/handle/20.500.12854/47753
http://hdl.handle.net/20.500.12010/17579
Palabra clave:
Bloch solution
Lp setting
Floquet theory
Ecuaciones
Ecuaciones - Soluciones numéricas
Cálculo diferencial
Rights
License
Abierto (Texto Completo)
Description
Summary:In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions.