A stance data set on polarized conversations on Twitter about the efficacy of hydroxychloroquine as a treatment for COVID-19

At the time of this study, the SARS-CoV-2 virus that caused the COVID-19 pandemic has spread significantly across the world. Considering the uncertainty about policies, health risks, financial difficulties, etc. the online media, especially the Twitter platform, is experiencing a high volume of acti...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14636
Acceso en línea:
https://www.sciencedirect.com/science/article/pii/S235234092031283X?via%3Dihub
http://hdl.handle.net/20.500.12010/14636
https://doi.org/10.1016/j.dib.2020.106401
Palabra clave:
Hydroxychloroquine
Opinion mining
Polarity
Social media
Stance classification
Twitter
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Acceso restringido
Description
Summary:At the time of this study, the SARS-CoV-2 virus that caused the COVID-19 pandemic has spread significantly across the world. Considering the uncertainty about policies, health risks, financial difficulties, etc. the online media, especially the Twitter platform, is experiencing a high volume of activity related to this pandemic. Among the hot topics, the polarized debates about unconfirmed medicines for the treatment and prevention of the disease have attracted significant attention from online media users. In this work, we present a stance data set, COVID-CQ, of user-generated content on Twitter in the context of COVID-19. We investigated more than 14 thousand tweets and manually annotated the tweet initiators’ opinions regarding the use of “chloroquine” and “hydroxychloroquine” for the treatment or prevention of COVID-19. To the best of our knowledge, COVID-CQ is the first data set of Twitter users’ stances in the context of the COVID-19 pandemic, and the largest Twitter data set on users’ stances towards a claim, in any domain. We have made this data set available to the research community via the Mendeley Data repository. We expect this data set to be useful for many research purposes, including stance detection, evolution and dynamics of opinions regarding this outbreak, and changes in opinions in response to the exogenous shocks such as policy decisions and events.