Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020)
Objectives Coronavirus disease 2019 (COVID-19) represents a major pandemic threat that has spread to more than 212 countries with more than 432,902 recorded deaths and 7,898,442 confirmed cases worldwide so far (on June 14, 2020). It is crucial to investigate the spatial drivers to prevent and contr...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12154
- Acceso en línea:
- https://www.ijidonline.com/article/S1201-9712(20)30493-8/fulltext#%20
http://hdl.handle.net/20.500.12010/12154
https://doi.org/10.1016/j.ijid.2020.06.058
- Palabra clave:
- Spatial modeling
Risk map
Outbreak trend
Heatmap
Regression model
Iran
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_d92057def7b0701c3f2dbc8b79446e45 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12154 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
title |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
spellingShingle |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) Spatial modeling Risk map Outbreak trend Heatmap Regression model Iran Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
title_full |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
title_fullStr |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
title_full_unstemmed |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
title_sort |
Spatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020) |
dc.subject.spa.fl_str_mv |
Spatial modeling Risk map Outbreak trend Heatmap Regression model Iran |
topic |
Spatial modeling Risk map Outbreak trend Heatmap Regression model Iran Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
Objectives Coronavirus disease 2019 (COVID-19) represents a major pandemic threat that has spread to more than 212 countries with more than 432,902 recorded deaths and 7,898,442 confirmed cases worldwide so far (on June 14, 2020). It is crucial to investigate the spatial drivers to prevent and control the epidemic of COVID-19. Methods. This is the first comprehensive study of COVID-19 in Iran; and it carries out spatial modeling, risk mapping, change detection, and outbreak trend analysis of the disease spread. Four main steps were taken: comparison of Iranian coronavirus data with the global trends, prediction of mortality trends using regression modeling, spatial modeling, risk mapping, and change detection using the random forest (RF) machine learning technique (MLT), and validation of the modeled risk map. Results The results show that from February 19 to June 14, 2020, the average growth rates (GR) of COVID-19 deaths and the total number of COVID-19 cases in Iran were 1.08 and 1.10, respectively. Based on the World Health Organisation (WHO) data, Iran’s fatality rate (deaths/0.1 M pop) is 10.53. Other countries’ fatality rates were, for comparison, Belgium – 83.32, UK – 61.39, Spain – 58.04, Italy – 56.73, Sweden – 48.28, France – 45.04, USA – 35.52, Canada – 21.49, Brazil – 20.10, Peru – 19.70, Chile – 16.20, Mexico– 12.80, and Germany – 10.58. The fatality rate for China is 0.32 (deaths/0.1 M pop). Over time, the heatmap of the infected areas identified two critical time intervals for the COVID-19 outbreak in Iran. The provinces were classified in terms of disease and death rates into a large primary group and three provinces that had critical outbreaks were separate from the others. The heatmap of countries of the world shows that China and Italy were distinguished from other countries in terms of nine viral infection-related parameters. The regression models for death cases showed an increasing trend but with some evidence of turning. A polynomial relationship was identified between the coronavirus infection rate and the province population density. Also, a third-degree polynomial regression model for deaths showed an increasing trend recently, indicating that subsequent measures taken to cope with the outbreak have been insufficient and ineffective. The general trend of deaths in Iran is similar to the world's, but Iran’s shows lower volatility. Change detection of COVID-19 risk maps with a random forest model for the period from March 11 to March 18 showed an increasing trend of COVID-19 in Iran’s provinces. It is worth noting that using the LASSO MLT to evaluate variables’ importance, indicated that the most important variables were the distance from bus stations, bakeries, hospitals, mosques, ATMs (automated teller machines), banks, and the minimum temperature of the coldest month. Conclusions We believe that this study's risk maps are the primary, fundamental step to take for managing and controlling COVID-19 in Iran and its provinces. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-24T16:55:02Z |
dc.date.available.none.fl_str_mv |
2020-08-24T16:55:02Z |
dc.date.created.none.fl_str_mv |
2020-06-17 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
1201-9712 |
dc.identifier.other.spa.fl_str_mv |
https://www.ijidonline.com/article/S1201-9712(20)30493-8/fulltext#%20 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/12154 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.ijid.2020.06.058 |
identifier_str_mv |
1201-9712 |
url |
https://www.ijidonline.com/article/S1201-9712(20)30493-8/fulltext#%20 http://hdl.handle.net/20.500.12010/12154 https://doi.org/10.1016/j.ijid.2020.06.058 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
19 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
International Journal of Infectious Diseases |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/3/Spatial%20modeling%2c%20risk%20mapping%2c%20change%20detection%2c%20and%20outbreak.png https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/5/PIIS1201971220304938.pdf.jpg https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/4/PIIS1201971220304938.pdf |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f 2f966407e7eeaca0d3b5b9c9a562ef56 c40d941de5ad69bc06123bf51869e964 fa8fc75dd49e7f6d1176f9025256a86a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213510213664768 |
spelling |
2020-08-24T16:55:02Z2020-08-24T16:55:02Z2020-06-171201-9712https://www.ijidonline.com/article/S1201-9712(20)30493-8/fulltext#%20http://hdl.handle.net/20.500.12010/12154https://doi.org/10.1016/j.ijid.2020.06.05819 páginasapplication/pdfengInternational Journal of Infectious Diseasesreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoSpatial modelingRisk mapOutbreak trendHeatmapRegression modelIranSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusSpatial modeling, risk mapping, change detection, and outbreak trend analysis of coronavirus (COVID-19) in Iran (days between February 19 and June 14, 2020)Artículohttp://purl.org/coar/resource_type/c_6501Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Objectives Coronavirus disease 2019 (COVID-19) represents a major pandemic threat that has spread to more than 212 countries with more than 432,902 recorded deaths and 7,898,442 confirmed cases worldwide so far (on June 14, 2020). It is crucial to investigate the spatial drivers to prevent and control the epidemic of COVID-19. Methods. This is the first comprehensive study of COVID-19 in Iran; and it carries out spatial modeling, risk mapping, change detection, and outbreak trend analysis of the disease spread. Four main steps were taken: comparison of Iranian coronavirus data with the global trends, prediction of mortality trends using regression modeling, spatial modeling, risk mapping, and change detection using the random forest (RF) machine learning technique (MLT), and validation of the modeled risk map. Results The results show that from February 19 to June 14, 2020, the average growth rates (GR) of COVID-19 deaths and the total number of COVID-19 cases in Iran were 1.08 and 1.10, respectively. Based on the World Health Organisation (WHO) data, Iran’s fatality rate (deaths/0.1 M pop) is 10.53. Other countries’ fatality rates were, for comparison, Belgium – 83.32, UK – 61.39, Spain – 58.04, Italy – 56.73, Sweden – 48.28, France – 45.04, USA – 35.52, Canada – 21.49, Brazil – 20.10, Peru – 19.70, Chile – 16.20, Mexico– 12.80, and Germany – 10.58. The fatality rate for China is 0.32 (deaths/0.1 M pop). Over time, the heatmap of the infected areas identified two critical time intervals for the COVID-19 outbreak in Iran. The provinces were classified in terms of disease and death rates into a large primary group and three provinces that had critical outbreaks were separate from the others. The heatmap of countries of the world shows that China and Italy were distinguished from other countries in terms of nine viral infection-related parameters. The regression models for death cases showed an increasing trend but with some evidence of turning. A polynomial relationship was identified between the coronavirus infection rate and the province population density. Also, a third-degree polynomial regression model for deaths showed an increasing trend recently, indicating that subsequent measures taken to cope with the outbreak have been insufficient and ineffective. The general trend of deaths in Iran is similar to the world's, but Iran’s shows lower volatility. Change detection of COVID-19 risk maps with a random forest model for the period from March 11 to March 18 showed an increasing trend of COVID-19 in Iran’s provinces. It is worth noting that using the LASSO MLT to evaluate variables’ importance, indicated that the most important variables were the distance from bus stations, bakeries, hospitals, mosques, ATMs (automated teller machines), banks, and the minimum temperature of the coldest month. Conclusions We believe that this study's risk maps are the primary, fundamental step to take for managing and controlling COVID-19 in Iran and its provinces.Pourghasemia, Hamid RezaPouyanb, SoheilaHeidaric, BahramFarajzadehd, ZakariyaFallah Shamsia, Seyed RashidBabaeia, SedighehKhosravia, RasoulEtemadie, MohammadGhanbariana, GholamabbasFarhadia, AhmadRoja, SafaeianaHeidarif, ZahraTarazkard, Mohammad HassanTiefenbacherg, John P.Azmih, AmirSadeghiani, FaezehLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILSpatial modeling, risk mapping, change detection, and outbreak.pngSpatial modeling, risk mapping, change detection, and outbreak.pngimage/png110686https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/3/Spatial%20modeling%2c%20risk%20mapping%2c%20change%20detection%2c%20and%20outbreak.png2f966407e7eeaca0d3b5b9c9a562ef56MD53open accessPIIS1201971220304938.pdf.jpgPIIS1201971220304938.pdf.jpgIM Thumbnailimage/jpeg21945https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/5/PIIS1201971220304938.pdf.jpgc40d941de5ad69bc06123bf51869e964MD55open accessORIGINALPIIS1201971220304938.pdfPIIS1201971220304938.pdfArticulo Reservadoapplication/pdf7617559https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12154/4/PIIS1201971220304938.pdffa8fc75dd49e7f6d1176f9025256a86aMD54embargoed access|||2420-08-2420.500.12010/12154oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/121542020-08-24 11:56:54.391embargoed access|||2420-08-24Repositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |