Diagnosis of a battery energy storage system based on principal component analysis
This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- spa
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/27482
- Acceso en línea:
- https://doi.org/10.1016/j.renene.2019.08.064
http://hdl.handle.net/20.500.12010/27482
http://expeditiorepositorio.utadeo.edu.co
- Palabra clave:
- Diagnosis
Battery energy storage system
Principal component analysis
Energía solar
Generadores de energía fotovoltaica
Células solares
- Rights
- License
- Abierto (Texto Completo)
Summary: | This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the operation of the BESS. The principal component analysis model is applied to a parameter set associated to the capacity, internal resistance and open circuit voltage of a battery energy storage system. The parameters are identified from experimental data collected daily. The PCA model retains the first 5 components that collect 80.25% of the total variability. During the test under real operation contidions, PCA diagnosed a degradation of state of health fastest than the comercial battery controller. A change in the charging modes lead to a battery recovery that was also monitored by the proposed algortihm, and control actions are proposed that lead the BESS to work in normal conditions. |
---|