Diagnosis of a battery energy storage system based on principal component analysis

This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
spa
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/27482
Acceso en línea:
https://doi.org/10.1016/j.renene.2019.08.064
http://hdl.handle.net/20.500.12010/27482
http://expeditiorepositorio.utadeo.edu.co
Palabra clave:
Diagnosis
Battery energy storage system
Principal component analysis
Energía solar
Generadores de energía fotovoltaica
Células solares
Rights
License
Abierto (Texto Completo)
Description
Summary:This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the operation of the BESS. The principal component analysis model is applied to a parameter set associated to the capacity, internal resistance and open circuit voltage of a battery energy storage system. The parameters are identified from experimental data collected daily. The PCA model retains the first 5 components that collect 80.25% of the total variability. During the test under real operation contidions, PCA diagnosed a degradation of state of health fastest than the comercial battery controller. A change in the charging modes lead to a battery recovery that was also monitored by the proposed algortihm, and control actions are proposed that lead the BESS to work in normal conditions.