Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera

Una de las grandes preocupaciones del mundo es la escasez de combustibles a base de petróleo, por lo que se busca sustituir estos hidrocarburos a partir de nuevas alternativas energéticas, entre ellas se encuentra la elaboración de biodiésel, producto de las reacciones de transesterificación y ester...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
spa
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/8048
Acceso en línea:
http://hdl.handle.net/20.500.12010/8048
Palabra clave:
Biodiésel
Transesterificación
Química, Ingeniería
Química
Soluciones (Química)
Biocombustibles
Biodiésel
Alcoholes
Biodiesel
Rights
License
Abierto (Texto Completo)
id UTADEO2_cfbe4af399b693fa4bd3955d85fbc531
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/8048
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
title Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
spellingShingle Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
Biodiésel
Transesterificación
Química, Ingeniería
Química
Soluciones (Química)
Biocombustibles
Biodiésel
Alcoholes
Biodiesel
title_short Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
title_full Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
title_fullStr Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
title_full_unstemmed Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
title_sort Producción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papelera
dc.contributor.advisor.none.fl_str_mv Vargas Solano, Edgar Mauricio
dc.subject.spa.fl_str_mv Biodiésel
Transesterificación
topic Biodiésel
Transesterificación
Química, Ingeniería
Química
Soluciones (Química)
Biocombustibles
Biodiésel
Alcoholes
Biodiesel
dc.subject.lemb.spa.fl_str_mv Química, Ingeniería
Química
Soluciones (Química)
Biocombustibles
Biodiésel
Alcoholes
dc.subject.keyword.spa.fl_str_mv Biodiesel
description Una de las grandes preocupaciones del mundo es la escasez de combustibles a base de petróleo, por lo que se busca sustituir estos hidrocarburos a partir de nuevas alternativas energéticas, entre ellas se encuentra la elaboración de biodiésel, producto de las reacciones de transesterificación y esterificación usando una materia prima oleosa, un alcohol, generalmente metanol, y un catalizador. Este trabajo tiene como objetivo la producción de biodiésel a partir de aceite de palma refinado y etanol, dado que es un alcohol que puede ser fácilmente elaborado mediante fermentación alcohólica, reduciendo el riesgo de contaminación y daño al ambiente. También empleamos un catalizador heterogéneo de cenizas volantes como residuo de la combustión en la cogeneración de energía en la industria papelera para contribuir a la construcción de una economía circular. Se implementó un método cromatográfico de gases mediante la esterificación de tres ácidos grasos libres para la producción de estándares analíticos de esteres etílicos y mediante reacciones de transesterificación se logra la cuantificación de un diseño experimental 22. Las reacciones se llevaron a cabo en un reactor Batch de alta presión durante 6 horas, con 20% w/w de catalizador, agitación de 600 rpm, relación molar etanol:aceite (9:1 y 18:1) y temperatura (90°C y 110°C) . Se caracterizó el catalizador por difracción de rayos X (DRX) y microscopía electrónica de barrido (SEM) y se caracterizó el RBD por normas NTC. Se encontró actividad catalítica para las cenizas volantes usando etanol con un mayor rendimiento de 42.67% a 110°C y con una relación molar etanol: aceite de 9:1. Se realizó un blanco variando la cantidad de catalizador. Los análisis que tienen ANOVAS dieron una validez estadística a los resultados.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-03-17T13:41:36Z
dc.date.available.none.fl_str_mv 2020-03-17T13:41:36Z
dc.date.created.none.fl_str_mv 2020
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/8048
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Bogotá Jorge Tadeo Lozano
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozano
url http://hdl.handle.net/20.500.12010/8048
identifier_str_mv instname:Universidad de Bogotá Jorge Tadeo Lozano
reponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozano
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, A. S., & Abbas, S. M. (2013). Kinetic Study and Simulation of Oleic Acid Esterification in Different Type of Reactors. Iraqi Journal of Chemical and Petroleum Engineering, 14(2), 13–20.
AENOR. (2011). Determination of Total FAME and Linolenic Acid Methyl Esters in Biodiesel According to EN-14103. Http://Www.Aenor.Es/, 6584, 16. Retrieved from http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0048045#.WzJUEVVKiUk
APHA, AWWA, W. (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.
Aranda, D. A. G., Santos, R. T. P., Tapanes, N. C. O., Ramos, A. L. D., & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodieselproduction from palm fatty acids. Catalysis Letters, 122(1–2), 20–25. https://doi.org/10.1007/s10562-007-9318-z
Avhad, M. R., & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.038
Bigović, M., & Kastratovic, V. (2018). Esterification of stearic acid with lower monohydroxylic alcohols, 24(3), 283–291.
Bolonio, D., García-martínez, M., Ortega, M. F., & Lapuerta, M. (2019). Fatty acid ethyl esters ( FAEEs ) obtained from grapeseed oil : A fully renewable biofuel, 132, 278–283. https://doi.org/10.1016/j.renene.2018.08.010
Bolonio, D., Llamas, A., Rodr, J., Mar, A., & Canoira, L. (2015). Estimation of Cold Flow Performance and Oxidation Stability of Fatty Acid Ethyl Esters from Lipids Obtained from Escherichia coli. https://doi.org/10.1021/acs.energyfuels.5b00141
Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071
Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763–4784. https://doi.org/10.1016/j.rser.2012.04.010
Chemicalbook. (2017). Palmitic acid ethyl ester. Retrieved July 16, 2019, from https://www.chemicalbook.com/ChemicalProductProperty_US_CB9854033.aspx
Chong, C. L. (2012). Measurement and Maintenance of Palm Oil Quality. Palm Oil: Production, Processing, Characterization, and Uses. AOCS Press. https://doi.org/10.1016/B978-0-9818936-9-3.50018-6
Clavijo, J. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3). https://doi.org/10.15765/e.v3i3.420
Codex stan. (1999). Norma del codex para aceites vegetales especificados Codex Stan 210-1999.
Endalew, A. K., Kiros, Y., & Zanzi, R. (2011). Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and Bioenergy, 35(9), 3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011
Essence Lluch. (2019). Oleato etilo. Retrieved from http://www.lluche.com/es/productos/Pages/OpenDocuments.aspx?materialNumber=100564600&type=1&lang=es
Fedebiocombustibles. (2014). Cifras Informativas del Sector Biocombustibles, 1–9. https://doi.org/http://www.fedebiocombustibles.com/files/Cifras%20Informativas%20del%20Sector%20Biocombustibles%20-%20BIODIESEL(54).pdf
Fedebiocombustibles. (2020a). Demanda nacional de alcohol carburante (etanol). Retrieved January 16, 2020, from https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm
Fedebiocombustibles. (2020b). Precios de alcohol carburante (etanol). Retrieved January 17, 2020, from http://www.fedebiocombustibles.com/v3/estadistica-precios-titulo-Alcohol_Carburante_(Etanol).htm
Gebremariam, S. N., & Marchetti, J. M. (2018). Economics of biodiesel production: Review. Energy Conversion and Management, 168(May), 74–84. https://doi.org/10.1016/j.enconman.2018.05.002
HMDB. (2012). Showing metabocard for Ethyl stearate. https://doi.org/10.1126/science.1174621
Icontec. (2016). Grasas y aceites animales y vegetales, método de la determinación de la densidad ( masa por volumen convencional) NTC 336.
INTEGRASAS S.A.S. (2013). Aceite Palmali. Retrieved January 17, 2020, fromhttp://www.integrasas.com/Home/productos/aceite-palmali
Jiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management, 76, 980–985. https://doi.org/10.1016/j.enconman.2013.08.011
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002
Lett, L. A. (2014). Las amenazas globales, el reciclaje de residuos y el concepto de economía circular. Revista Argentina de Microbiologia, 46(1), 1–2. https://doi.org/10.1016/S0325-7541(14)70039-2
Londoño, B. (2012). Resolución 2154 de 2012.
Martinez, O., Sánchez, F., & Suárez, O. (2007). Ethyl ester production from (RBD) palm oil. Retrieved January 13, 2020, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092007000200005
Mateus, D., & Zorro, L. V. (2018). Determinación de las condiciones de activación en la reutilización del catalizador residual de cenizas volantes en la producción de biodiesel.
Nichols, L. (1984). Organic Chemistry Laboratory Techniques. Chemical & Engineering News, 62(41), 33. https://doi.org/10.1021/cen-v062n041.p033
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 28 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bogotá D.C., Colombia
dc.publisher.spa.fl_str_mv Universidad de Bogotá Jorge Tadeo Lozano
dc.publisher.program.spa.fl_str_mv Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Naturales e Ingeniería
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/1/Trabajo%20de%20grado.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/3/Licencia%20de%20autorizaci%c3%b3n.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/4/Trabajo%20de%20grado.pdf.jpg
bitstream.checksum.fl_str_mv 30f58d67cc6d9e21bddc23fea7e3391f
abceeb1c943c50d3343516f9dbfc110f
10449320d68c621ac1b624f115602db0
73a782701618a85eb527a3a299dbdf0e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213735481344000
spelling Vargas Solano, Edgar MauricioMoreno Beltrán, Ingrid KatherineRomero Alvarado, César AndrésBogotá D.C., Colombia2020-03-17T13:41:36Z2020-03-17T13:41:36Z2020http://hdl.handle.net/20.500.12010/8048instname:Universidad de Bogotá Jorge Tadeo Lozanoreponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo LozanoUna de las grandes preocupaciones del mundo es la escasez de combustibles a base de petróleo, por lo que se busca sustituir estos hidrocarburos a partir de nuevas alternativas energéticas, entre ellas se encuentra la elaboración de biodiésel, producto de las reacciones de transesterificación y esterificación usando una materia prima oleosa, un alcohol, generalmente metanol, y un catalizador. Este trabajo tiene como objetivo la producción de biodiésel a partir de aceite de palma refinado y etanol, dado que es un alcohol que puede ser fácilmente elaborado mediante fermentación alcohólica, reduciendo el riesgo de contaminación y daño al ambiente. También empleamos un catalizador heterogéneo de cenizas volantes como residuo de la combustión en la cogeneración de energía en la industria papelera para contribuir a la construcción de una economía circular. Se implementó un método cromatográfico de gases mediante la esterificación de tres ácidos grasos libres para la producción de estándares analíticos de esteres etílicos y mediante reacciones de transesterificación se logra la cuantificación de un diseño experimental 22. Las reacciones se llevaron a cabo en un reactor Batch de alta presión durante 6 horas, con 20% w/w de catalizador, agitación de 600 rpm, relación molar etanol:aceite (9:1 y 18:1) y temperatura (90°C y 110°C) . Se caracterizó el catalizador por difracción de rayos X (DRX) y microscopía electrónica de barrido (SEM) y se caracterizó el RBD por normas NTC. Se encontró actividad catalítica para las cenizas volantes usando etanol con un mayor rendimiento de 42.67% a 110°C y con una relación molar etanol: aceite de 9:1. Se realizó un blanco variando la cantidad de catalizador. Los análisis que tienen ANOVAS dieron una validez estadística a los resultados.Requerimientos de sistema: Adobe Acrobat ReaderOne of the world’s major concerns is the scarcity of petroleum-based fuels, and so new energy alternatives are being sought to replace these hydrocarbons, including the 6 production of biodiesel, the product of transesterification and esterification reactions using and oily raw material, an alcohol, generally methanol, and a catalyst. This work aims to produce biodiesel from refined palm oil and ethanol, since it is an alcohol that can be easily produced by alcoholic fermentation, reducing the risk of contamination and damage to the environment. We also use a heterogeneous fly ash catalyst as a combustion residue in the cogeneration of energy in the paper industry to help build a circular economy. A gas chromatographic method was implemented through the esterification of the three free fatty acids to produce analytical standards of ethyl esters and through transesterification reactions the quantification of an experimental design is achieve. The reactions were carried out in a high-pressure batch reactor for 6 hours, with 20% catalyst, 600 rpm agitation, molar ethanol:oil ratio (9:1 and 18:1) and temperature (90°C and 110°C). The catalyst was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and RBD was characterized by NTC standards. Catalytic activity was found for fly ash using ethanol with a higher yield of 42.67% at 110°C and with a molar ethanol:oil ratio of 9:1. A target was made by varying the amount of catalyst. The analyses that have ANOVAS gave a statistical validity of the results.Ingeniero Químico28 páginasapplication/pdfspaUniversidad de Bogotá Jorge Tadeo LozanoIngeniería QuímicaFacultad de Ciencias Naturales e IngenieríaBiodiéselTransesterificaciónQuímica, IngenieríaQuímicaSoluciones (Química)BiocombustiblesBiodiéselAlcoholesBiodieselProducción de biodiésel a partir de etanol con aceite de palma refinado (RBD) usando cenizas volantes residuales como catalizador heterogéneo de la industria papeleraTrabajo de gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Abbas, A. S., & Abbas, S. M. (2013). Kinetic Study and Simulation of Oleic Acid Esterification in Different Type of Reactors. Iraqi Journal of Chemical and Petroleum Engineering, 14(2), 13–20.AENOR. (2011). Determination of Total FAME and Linolenic Acid Methyl Esters in Biodiesel According to EN-14103. Http://Www.Aenor.Es/, 6584, 16. Retrieved from http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0048045#.WzJUEVVKiUkAPHA, AWWA, W. (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.Aranda, D. A. G., Santos, R. T. P., Tapanes, N. C. O., Ramos, A. L. D., & Antunes, O. A. C. (2008). Acid-catalyzed homogeneous esterification reaction for biodieselproduction from palm fatty acids. Catalysis Letters, 122(1–2), 20–25. https://doi.org/10.1007/s10562-007-9318-zAvhad, M. R., & Marchetti, J. M. (2015). A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.038Bigović, M., & Kastratovic, V. (2018). Esterification of stearic acid with lower monohydroxylic alcohols, 24(3), 283–291.Bolonio, D., García-martínez, M., Ortega, M. F., & Lapuerta, M. (2019). Fatty acid ethyl esters ( FAEEs ) obtained from grapeseed oil : A fully renewable biofuel, 132, 278–283. https://doi.org/10.1016/j.renene.2018.08.010Bolonio, D., Llamas, A., Rodr, J., Mar, A., & Canoira, L. (2015). Estimation of Cold Flow Performance and Oxidation Stability of Fatty Acid Ethyl Esters from Lipids Obtained from Escherichia coli. https://doi.org/10.1021/acs.energyfuels.5b00141Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763–4784. https://doi.org/10.1016/j.rser.2012.04.010Chemicalbook. (2017). Palmitic acid ethyl ester. Retrieved July 16, 2019, from https://www.chemicalbook.com/ChemicalProductProperty_US_CB9854033.aspxChong, C. L. (2012). Measurement and Maintenance of Palm Oil Quality. Palm Oil: Production, Processing, Characterization, and Uses. AOCS Press. https://doi.org/10.1016/B978-0-9818936-9-3.50018-6Clavijo, J. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3). https://doi.org/10.15765/e.v3i3.420Codex stan. (1999). Norma del codex para aceites vegetales especificados Codex Stan 210-1999.Endalew, A. K., Kiros, Y., & Zanzi, R. (2011). Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and Bioenergy, 35(9), 3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011Essence Lluch. (2019). Oleato etilo. Retrieved from http://www.lluche.com/es/productos/Pages/OpenDocuments.aspx?materialNumber=100564600&type=1&lang=esFedebiocombustibles. (2014). Cifras Informativas del Sector Biocombustibles, 1–9. https://doi.org/http://www.fedebiocombustibles.com/files/Cifras%20Informativas%20del%20Sector%20Biocombustibles%20-%20BIODIESEL(54).pdfFedebiocombustibles. (2020a). Demanda nacional de alcohol carburante (etanol). Retrieved January 16, 2020, from https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htmFedebiocombustibles. (2020b). Precios de alcohol carburante (etanol). Retrieved January 17, 2020, from http://www.fedebiocombustibles.com/v3/estadistica-precios-titulo-Alcohol_Carburante_(Etanol).htmGebremariam, S. N., & Marchetti, J. M. (2018). Economics of biodiesel production: Review. Energy Conversion and Management, 168(May), 74–84. https://doi.org/10.1016/j.enconman.2018.05.002HMDB. (2012). Showing metabocard for Ethyl stearate. https://doi.org/10.1126/science.1174621Icontec. (2016). Grasas y aceites animales y vegetales, método de la determinación de la densidad ( masa por volumen convencional) NTC 336.INTEGRASAS S.A.S. (2013). Aceite Palmali. Retrieved January 17, 2020, fromhttp://www.integrasas.com/Home/productos/aceite-palmaliJiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management, 76, 980–985. https://doi.org/10.1016/j.enconman.2013.08.011Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002Lett, L. A. (2014). Las amenazas globales, el reciclaje de residuos y el concepto de economía circular. Revista Argentina de Microbiologia, 46(1), 1–2. https://doi.org/10.1016/S0325-7541(14)70039-2Londoño, B. (2012). Resolución 2154 de 2012.Martinez, O., Sánchez, F., & Suárez, O. (2007). Ethyl ester production from (RBD) palm oil. Retrieved January 13, 2020, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092007000200005Mateus, D., & Zorro, L. V. (2018). Determinación de las condiciones de activación en la reutilización del catalizador residual de cenizas volantes en la producción de biodiesel.Nichols, L. (1984). Organic Chemistry Laboratory Techniques. Chemical & Engineering News, 62(41), 33. https://doi.org/10.1021/cen-v062n041.p033ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfTrabajo de gradoapplication/pdf1018542https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/1/Trabajo%20de%20grado.pdf30f58d67cc6d9e21bddc23fea7e3391fMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessLicencia de autorización.pdfLicencia de autorización.pdfLicencia de autorizaciónapplication/pdf6264789https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/3/Licencia%20de%20autorizaci%c3%b3n.pdf10449320d68c621ac1b624f115602db0MD53open accessTHUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg5761https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/8048/4/Trabajo%20de%20grado.pdf.jpg73a782701618a85eb527a3a299dbdf0eMD54open access20.500.12010/8048oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/80482020-03-17 08:46:58.456open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==