Solar Radiation Prediction Using NARX Model
The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biolog...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16801
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model
http://hdl.handle.net/20.500.12010/16801
- Palabra clave:
- Biología
Red neuronal artificial (ANN)
Neurona biológica
Red neuronal
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_cd913e78eab9c89ab181d14959c6d09c |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16801 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Solar Radiation Prediction Using NARX Model |
title |
Solar Radiation Prediction Using NARX Model |
spellingShingle |
Solar Radiation Prediction Using NARX Model Biología Red neuronal artificial (ANN) Neurona biológica Red neuronal |
title_short |
Solar Radiation Prediction Using NARX Model |
title_full |
Solar Radiation Prediction Using NARX Model |
title_fullStr |
Solar Radiation Prediction Using NARX Model |
title_full_unstemmed |
Solar Radiation Prediction Using NARX Model |
title_sort |
Solar Radiation Prediction Using NARX Model |
dc.subject.spa.fl_str_mv |
Biología |
topic |
Biología Red neuronal artificial (ANN) Neurona biológica Red neuronal |
dc.subject.lemb.spa.fl_str_mv |
Red neuronal artificial (ANN) Neurona biológica Red neuronal |
description |
The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biological aspect. The idea was to reproduce, in an artificial way, the behaviors observed in man. It was in 1943 that the first artificial neural network (ANN) was created by Warren McCulloch and Walter Pitts. It is a simple elementary processor imitating the structure and the functioning from the biological neuron. Artificial neural network is characterized by its capacity to learning and generalizing. It represents a very powerful tool. It provided multiple solutions to different complex problems. In these recent years, its effectiveness is proved in various researches fields. ANN is subdivided on two main groups, the static and dynamic neural network. The choice of the one or the other neural network type depends to the application to be processed and the complexity of model. For static neural network, information propagates in a single direction, layer by layer, and from the inlet to the outlet. They are generally used in various applications such as classifications, pattern recognition, and functions approximation. For the dynamic neural network dynamic neural network is not limited. Each neuron can send and receive information from all other neurons. The dynamic neural network architecture includes frequently one or more cycles which necessarily contain at least one delay connection. This gives rise to the dynamism notion. This neural network type is more complex than the static one, but it is more efficient for some particular applications such as dynamic modeling, monitoring, and process control. In this chapter, nonlinear autoregressive models with exogenous input (NARX) model, as type of dynamic neural network, will be used to the solar radiation prediction. Simulation results will be presented to prove the effectiveness of this model compared to those obtained using the static one. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018-02-28 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:29:42Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:29:42Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16801 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.70570 |
url |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model http://hdl.handle.net/20.500.12010/16801 |
identifier_str_mv |
10.5772/intechopen.70570 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Ines Sansa and Najiba Mrabet Bellaaj (February 28th 2018). Solar Radiation Prediction Using NARX Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70570. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
156 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/1/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/3/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf.jpg |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f da17b3c4ec03f362402de1dad82ec28e f94e49470bc040d7eddeeca6b23f4786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213909702246400 |
spelling |
2021-01-20T20:29:42Z2021-01-20T20:29:42Z2018-02-28https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-modelhttp://hdl.handle.net/20.500.12010/1680110.5772/intechopen.70570156 páginasapplication/pdfengIntechOpenBiologíaRed neuronal artificial (ANN)Neurona biológicaRed neuronalSolar Radiation Prediction Using NARX ModelAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Ines Sansa and Najiba Mrabet Bellaaj (February 28th 2018). Solar Radiation Prediction Using NARX Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70570.The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biological aspect. The idea was to reproduce, in an artificial way, the behaviors observed in man. It was in 1943 that the first artificial neural network (ANN) was created by Warren McCulloch and Walter Pitts. It is a simple elementary processor imitating the structure and the functioning from the biological neuron. Artificial neural network is characterized by its capacity to learning and generalizing. It represents a very powerful tool. It provided multiple solutions to different complex problems. In these recent years, its effectiveness is proved in various researches fields. ANN is subdivided on two main groups, the static and dynamic neural network. The choice of the one or the other neural network type depends to the application to be processed and the complexity of model. For static neural network, information propagates in a single direction, layer by layer, and from the inlet to the outlet. They are generally used in various applications such as classifications, pattern recognition, and functions approximation. For the dynamic neural network dynamic neural network is not limited. Each neuron can send and receive information from all other neurons. The dynamic neural network architecture includes frequently one or more cycles which necessarily contain at least one delay connection. This gives rise to the dynamism notion. This neural network type is more complex than the static one, but it is more efficient for some particular applications such as dynamic modeling, monitoring, and process control. In this chapter, nonlinear autoregressive models with exogenous input (NARX) model, as type of dynamic neural network, will be used to the solar radiation prediction. Simulation results will be presented to prove the effectiveness of this model compared to those obtained using the static one.http://purl.org/coar/resource_type/c_2f33Sansa, InesMrabet Bellaaj, NajibaLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessORIGINALSolar Radiation Prediction Using NARX Model_74.pdfSolar Radiation Prediction Using NARX Model_74.pdfVer documentoapplication/pdf2173956https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/1/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdfda17b3c4ec03f362402de1dad82ec28eMD51open accessTHUMBNAILSolar Radiation Prediction Using NARX Model_74.pdf.jpgSolar Radiation Prediction Using NARX Model_74.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/3/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16801oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168012021-01-31 21:22:17.852open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |