Solar Radiation Prediction Using NARX Model

The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biolog...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2018
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16801
Acceso en línea:
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model
http://hdl.handle.net/20.500.12010/16801
Palabra clave:
Biología
Red neuronal artificial (ANN)
Neurona biológica
Red neuronal
Rights
License
Abierto (Texto Completo)
id UTADEO2_cd913e78eab9c89ab181d14959c6d09c
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16801
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Solar Radiation Prediction Using NARX Model
title Solar Radiation Prediction Using NARX Model
spellingShingle Solar Radiation Prediction Using NARX Model
Biología
Red neuronal artificial (ANN)
Neurona biológica
Red neuronal
title_short Solar Radiation Prediction Using NARX Model
title_full Solar Radiation Prediction Using NARX Model
title_fullStr Solar Radiation Prediction Using NARX Model
title_full_unstemmed Solar Radiation Prediction Using NARX Model
title_sort Solar Radiation Prediction Using NARX Model
dc.subject.spa.fl_str_mv Biología
topic Biología
Red neuronal artificial (ANN)
Neurona biológica
Red neuronal
dc.subject.lemb.spa.fl_str_mv Red neuronal artificial (ANN)
Neurona biológica
Red neuronal
description The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biological aspect. The idea was to reproduce, in an artificial way, the behaviors observed in man. It was in 1943 that the first artificial neural network (ANN) was created by Warren McCulloch and Walter Pitts. It is a simple elementary processor imitating the structure and the functioning from the biological neuron. Artificial neural network is characterized by its capacity to learning and generalizing. It represents a very powerful tool. It provided multiple solutions to different complex problems. In these recent years, its effectiveness is proved in various researches fields. ANN is subdivided on two main groups, the static and dynamic neural network. The choice of the one or the other neural network type depends to the application to be processed and the complexity of model. For static neural network, information propagates in a single direction, layer by layer, and from the inlet to the outlet. They are generally used in various applications such as classifications, pattern recognition, and functions approximation. For the dynamic neural network dynamic neural network is not limited. Each neuron can send and receive information from all other neurons. The dynamic neural network architecture includes frequently one or more cycles which necessarily contain at least one delay connection. This gives rise to the dynamism notion. This neural network type is more complex than the static one, but it is more efficient for some particular applications such as dynamic modeling, monitoring, and process control. In this chapter, nonlinear autoregressive models with exogenous input (NARX) model, as type of dynamic neural network, will be used to the solar radiation prediction. Simulation results will be presented to prove the effectiveness of this model compared to those obtained using the static one.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-02-28
dc.date.accessioned.none.fl_str_mv 2021-01-20T20:29:42Z
dc.date.available.none.fl_str_mv 2021-01-20T20:29:42Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.other.none.fl_str_mv https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/16801
dc.identifier.doi.none.fl_str_mv 10.5772/intechopen.70570
url https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-model
http://hdl.handle.net/20.500.12010/16801
identifier_str_mv 10.5772/intechopen.70570
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ines Sansa and Najiba Mrabet Bellaaj (February 28th 2018). Solar Radiation Prediction Using NARX Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70570.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 156 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IntechOpen
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/1/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/3/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf.jpg
bitstream.checksum.fl_str_mv abceeb1c943c50d3343516f9dbfc110f
da17b3c4ec03f362402de1dad82ec28e
f94e49470bc040d7eddeeca6b23f4786
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213909702246400
spelling 2021-01-20T20:29:42Z2021-01-20T20:29:42Z2018-02-28https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/solar-radiation-prediction-using-narx-modelhttp://hdl.handle.net/20.500.12010/1680110.5772/intechopen.70570156 páginasapplication/pdfengIntechOpenBiologíaRed neuronal artificial (ANN)Neurona biológicaRed neuronalSolar Radiation Prediction Using NARX ModelAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Ines Sansa and Najiba Mrabet Bellaaj (February 28th 2018). Solar Radiation Prediction Using NARX Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70570.The human brain, like every vital organ, is constituted of neurons. It is through this organ that we can learn and reason, reflect and memorize. The geniality of human brain and more particularly of its neurons motivates several researchers to interest to this research and to benefit from its biological aspect. The idea was to reproduce, in an artificial way, the behaviors observed in man. It was in 1943 that the first artificial neural network (ANN) was created by Warren McCulloch and Walter Pitts. It is a simple elementary processor imitating the structure and the functioning from the biological neuron. Artificial neural network is characterized by its capacity to learning and generalizing. It represents a very powerful tool. It provided multiple solutions to different complex problems. In these recent years, its effectiveness is proved in various researches fields. ANN is subdivided on two main groups, the static and dynamic neural network. The choice of the one or the other neural network type depends to the application to be processed and the complexity of model. For static neural network, information propagates in a single direction, layer by layer, and from the inlet to the outlet. They are generally used in various applications such as classifications, pattern recognition, and functions approximation. For the dynamic neural network dynamic neural network is not limited. Each neuron can send and receive information from all other neurons. The dynamic neural network architecture includes frequently one or more cycles which necessarily contain at least one delay connection. This gives rise to the dynamism notion. This neural network type is more complex than the static one, but it is more efficient for some particular applications such as dynamic modeling, monitoring, and process control. In this chapter, nonlinear autoregressive models with exogenous input (NARX) model, as type of dynamic neural network, will be used to the solar radiation prediction. Simulation results will be presented to prove the effectiveness of this model compared to those obtained using the static one.http://purl.org/coar/resource_type/c_2f33Sansa, InesMrabet Bellaaj, NajibaLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessORIGINALSolar Radiation Prediction Using NARX Model_74.pdfSolar Radiation Prediction Using NARX Model_74.pdfVer documentoapplication/pdf2173956https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/1/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdfda17b3c4ec03f362402de1dad82ec28eMD51open accessTHUMBNAILSolar Radiation Prediction Using NARX Model_74.pdf.jpgSolar Radiation Prediction Using NARX Model_74.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16801/3/Solar%20Radiation%20Prediction%20Using%20NARX%20Model_74.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16801oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168012021-01-31 21:22:17.852open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==