Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand

A nanostructured material from black sand, whose structure is composed by Fe2O3 and TiO2 oxides, was prepared via hydrothermal treatment (at 120 °C for 72 h), The starting mineral (as-synthesized nanostructure) was characterized by XRF spectroscopy and thermogravimetric analysis (TGA/DTA) whereas th...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/27476
Acceso en línea:
https://doi.org/10.1002/slct.201903560
http://hdl.handle.net/20.500.12010/27476
http://expeditiorepositorio.utadeo.edu.co
Palabra clave:
Calcination temperature
Photocatalytic activity
Nanostructures synthesized
Nanoestructuras
Sistemas nanoelectromecánicos
Nanotecnología
Rights
License
Abierto (Texto Completo)
id UTADEO2_c146445a0efd236aa80c43acef13fe78
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/27476
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
title Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
spellingShingle Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
Calcination temperature
Photocatalytic activity
Nanostructures synthesized
Nanoestructuras
Sistemas nanoelectromecánicos
Nanotecnología
title_short Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
title_full Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
title_fullStr Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
title_full_unstemmed Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
title_sort Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand
dc.subject.spa.fl_str_mv Calcination temperature
Photocatalytic activity
Nanostructures synthesized
topic Calcination temperature
Photocatalytic activity
Nanostructures synthesized
Nanoestructuras
Sistemas nanoelectromecánicos
Nanotecnología
dc.subject.lemb.spa.fl_str_mv Nanoestructuras
Sistemas nanoelectromecánicos
Nanotecnología
description A nanostructured material from black sand, whose structure is composed by Fe2O3 and TiO2 oxides, was prepared via hydrothermal treatment (at 120 °C for 72 h), The starting mineral (as-synthesized nanostructure) was characterized by XRF spectroscopy and thermogravimetric analysis (TGA/DTA) whereas the calcined nanostructures were analyzed by scanning electron microscopy/EDX, BET single point measurements, X-ray diffraction, FTIR spectroscopy, and UV-Vis spectrophotometry. The effect of thermal treatment on structural, morphological and redox properties of nanostructured samples (NS) have been thoroughly studied in the samples calcined at 400, 700 and 1000 °C, together with a non-treated sample (M1). Their photocatalytic activity toward hydrogen production in the presence of EDTA as sacrificial agent has been tested. The as-synthetized samples calcined at 1000 °C (NS-1000) showed a higher photocatalytic activity for hydrogen production, possibly due to the transformation of magnetite into more active photocatalytical phases (hematite) driven by the changes in surface morphology (such as reduction of crystallite and pore size reduction) according to thermal equilibrium of its phases. The highest activity for photocatalytic hydrogen production was achieved by the materials calcined at 1000 °C (M1-1000 and NS-1000), while the sample calcined at lower values (<700 °C) were the least active. The catalyst activity was assigned to the appearance of a new active phase (α-Fe2O3), which improves the electronic mobility during the photocatalytic mechanism.
publishDate 2020
dc.date.created.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-07-08T16:56:43Z
dc.date.available.none.fl_str_mv 2022-07-08T16:56:43Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 2365-6549
dc.identifier.other.spa.fl_str_mv https://doi.org/10.1002/slct.201903560
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/27476
dc.identifier.repourl.spa.fl_str_mv http://expeditiorepositorio.utadeo.edu.co
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1002/slct.201903560
dc.identifier.orcid.spa.fl_str_mv
identifier_str_mv 2365-6549

url https://doi.org/10.1002/slct.201903560
http://hdl.handle.net/20.500.12010/27476
http://expeditiorepositorio.utadeo.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.format.rda.spa.fl_str_mv 1 recurso en línea (archivo de texto)
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Bogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2020
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/27476/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/27476/3/Captura.PNG
bitstream.checksum.fl_str_mv baba314677a6b940f072575a13bb6906
d10ed8d14a4fdb7d4bc1c21d6040b62e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditiorepositorio@utadeo.edu.co
_version_ 1814213702801424384
spelling Colombia2022-07-08T16:56:43Z2022-07-08T16:56:43Z20202365-6549https://doi.org/10.1002/slct.201903560http://hdl.handle.net/20.500.12010/27476http://expeditiorepositorio.utadeo.edu.cohttps://doi.org/10.1002/slct.201903560A nanostructured material from black sand, whose structure is composed by Fe2O3 and TiO2 oxides, was prepared via hydrothermal treatment (at 120 °C for 72 h), The starting mineral (as-synthesized nanostructure) was characterized by XRF spectroscopy and thermogravimetric analysis (TGA/DTA) whereas the calcined nanostructures were analyzed by scanning electron microscopy/EDX, BET single point measurements, X-ray diffraction, FTIR spectroscopy, and UV-Vis spectrophotometry. The effect of thermal treatment on structural, morphological and redox properties of nanostructured samples (NS) have been thoroughly studied in the samples calcined at 400, 700 and 1000 °C, together with a non-treated sample (M1). Their photocatalytic activity toward hydrogen production in the presence of EDTA as sacrificial agent has been tested. The as-synthetized samples calcined at 1000 °C (NS-1000) showed a higher photocatalytic activity for hydrogen production, possibly due to the transformation of magnetite into more active photocatalytical phases (hematite) driven by the changes in surface morphology (such as reduction of crystallite and pore size reduction) according to thermal equilibrium of its phases. The highest activity for photocatalytic hydrogen production was achieved by the materials calcined at 1000 °C (M1-1000 and NS-1000), while the sample calcined at lower values (<700 °C) were the least active. The catalyst activity was assigned to the appearance of a new active phase (α-Fe2O3), which improves the electronic mobility during the photocatalytic mechanism.application/pdf1 recurso en línea (archivo de texto)engBogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2020Calcination temperaturePhotocatalytic activityNanostructures synthesizedNanoestructurasSistemas nanoelectromecánicosNanotecnologíaEffect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral SandArtículoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2López-Vásquez, A.Suárez-Escobar, AndrésHerney Ramírez, J.LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/27476/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAILCaptura.PNGCaptura.PNGImagenimage/png53626https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/27476/3/Captura.PNGd10ed8d14a4fdb7d4bc1c21d6040b62eMD53open access20.500.12010/27476oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/274762022-07-08 11:58:16.581metadata only accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditiorepositorio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==