Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review

In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique methodical features to model dependencies in complex networks, such as forward and backward propagation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12130
Acceso en línea:
https://doi.org/10.1016/j.eswa.2020.113649
http://hdl.handle.net/20.500.12010/12130
Palabra clave:
Supply chain management
Supply chain resilience
Bayesian network
Machine learning
Ripple effect
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Acceso restringido
id UTADEO2_bec6e17b598d8af72785d102b07fe36c
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12130
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
title Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
spellingShingle Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
Supply chain management
Supply chain resilience
Bayesian network
Machine learning
Ripple effect
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
title_short Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
title_full Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
title_fullStr Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
title_full_unstemmed Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
title_sort Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
dc.subject.spa.fl_str_mv Supply chain management
Supply chain resilience
Bayesian network
Machine learning
Ripple effect
topic Supply chain management
Supply chain resilience
Bayesian network
Machine learning
Ripple effect
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
dc.subject.lemb.spa.fl_str_mv Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
description In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique methodical features to model dependencies in complex networks, such as forward and backward propagation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research area in supply chain (SC) resilience and risk analysis. As a result, there is an acute need to review existing literature to ascertain recent developments and uncover future areas of research. Despite the increasing number of publications on BNs in the domain of SC uncertainty, an extensive review on their application to SC risk and resilience is lacking. To address this gap, we analyzed research articles published in peerreviewed academic journals from 2007 to 2019 using network analysis, visualization-based scientometric analysis, and clustering analysis. Through this study, we contribute to literature by discussing the challenges of current research, and, more importantly, identifying and proposing future research directions. The results of our survey show that further debate on the theory and application of BNs to SC resilience and risk management is a significant area of interest for both academics and practitioners. The applications of BNs, and their conjunction with machine learning algorithms to solve big data SC problems relating to uncertainty and risk, are also discussed.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-24T14:05:30Z
dc.date.available.none.fl_str_mv 2020-08-24T14:05:30Z
dc.date.created.none.fl_str_mv 2020
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 0957-4174
dc.identifier.other.spa.fl_str_mv https://doi.org/10.1016/j.eswa.2020.113649
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/12130
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.eswa.2020.113649
identifier_str_mv 0957-4174
url https://doi.org/10.1016/j.eswa.2020.113649
http://hdl.handle.net/20.500.12010/12130
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv Acceso restringido
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv image/jepg
dc.publisher.spa.fl_str_mv Expert Systems with Applications
dc.source.spa.fl_str_mv reponame:Expeditio Repositorio Institucional UJTL
instname:Universidad de Bogotá Jorge Tadeo Lozano
instname_str Universidad de Bogotá Jorge Tadeo Lozano
institution Universidad de Bogotá Jorge Tadeo Lozano
reponame_str Expeditio Repositorio Institucional UJTL
collection Expeditio Repositorio Institucional UJTL
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/1/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/3/Bayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/4/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/5/Bayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdf.jpg
bitstream.checksum.fl_str_mv b93fd879e3518191edfdd2c5719eea0b
bbaffca1c2c32f8b02a0a7fa4cbf1982
abceeb1c943c50d3343516f9dbfc110f
b93fd879e3518191edfdd2c5719eea0b
f4ac3887dfde4f6a5150fbb4853cad7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213707085905920
spelling 2020-08-24T14:05:30Z2020-08-24T14:05:30Z20200957-4174https://doi.org/10.1016/j.eswa.2020.113649http://hdl.handle.net/20.500.12010/12130https://doi.org/10.1016/j.eswa.2020.113649In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique methodical features to model dependencies in complex networks, such as forward and backward propagation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research area in supply chain (SC) resilience and risk analysis. As a result, there is an acute need to review existing literature to ascertain recent developments and uncover future areas of research. Despite the increasing number of publications on BNs in the domain of SC uncertainty, an extensive review on their application to SC risk and resilience is lacking. To address this gap, we analyzed research articles published in peerreviewed academic journals from 2007 to 2019 using network analysis, visualization-based scientometric analysis, and clustering analysis. Through this study, we contribute to literature by discussing the challenges of current research, and, more importantly, identifying and proposing future research directions. The results of our survey show that further debate on the theory and application of BNs to SC resilience and risk management is a significant area of interest for both academics and practitioners. The applications of BNs, and their conjunction with machine learning algorithms to solve big data SC problems relating to uncertainty and risk, are also discussed.20 páginasimage/jepgengExpert Systems with Applicationsreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoSupply chain managementSupply chain resilienceBayesian networkMachine learningRipple effectSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusBayesian networks for supply chain risk, resilience and ripple effect analysis: A literature reviewArtículohttp://purl.org/coar/resource_type/c_6501Acceso restringidohttp://purl.org/coar/access_right/c_f1cfHosseini, SeyedmohsenIvanov, DmitryORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png166831https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/1/Captura.PNGb93fd879e3518191edfdd2c5719eea0bMD51open accessBayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdfBayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdfArtículo reservadoapplication/pdf3626864https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/3/Bayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdfbbaffca1c2c32f8b02a0a7fa4cbf1982MD53embargoed access|||2200-08-24LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png166831https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/4/Captura.PNGb93fd879e3518191edfdd2c5719eea0bMD54open accessBayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdf.jpgBayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdf.jpgIM Thumbnailimage/jpeg16345https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12130/5/Bayesian-networks-for-supply-chain-risk--resilience-a_2020_Expert-Systems-wi.pdf.jpgf4ac3887dfde4f6a5150fbb4853cad7fMD55open access20.500.12010/12130oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/121302020-08-24 09:05:30.703open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==