Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning
Purpose: During the emerging COVID-19 pandemic, radiology departments faced a substantial increase in chest CT admissions coupled with the novel demand for quantification of pulmonary opacities. This article describes how our clinic implemented an automated software solution for this purpose into an...
- Autores:
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/13891
- Acceso en línea:
- https://doi.org/10.1016/j.ejrad.2020.109233
http://hdl.handle.net/20.500.12010/13891
- Palabra clave:
- Computed tomography
COVID-19
Machine learning
Software
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_b4f0e60c1bddb0c8a6e27e8cfbfdbf15 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/13891 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
title |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
spellingShingle |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning Computed tomography COVID-19 Machine learning Software Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
title_full |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
title_fullStr |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
title_full_unstemmed |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
title_sort |
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning |
dc.subject.spa.fl_str_mv |
Computed tomography COVID-19 Machine learning Software |
topic |
Computed tomography COVID-19 Machine learning Software Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
Purpose: During the emerging COVID-19 pandemic, radiology departments faced a substantial increase in chest CT admissions coupled with the novel demand for quantification of pulmonary opacities. This article describes how our clinic implemented an automated software solution for this purpose into an established software platform in 10 days. The underlying hypothesis was that modern academic centers in radiology are capable of developing and implementing such tools by their own efforts and fast enough to meet the rapidly increasing clinical needs in the wake of a pandemic. Method: Deep convolutional neural network algorithms for lung segmentation and opacity quantification on chest CTs were trained using semi-automatically and manually created ground-truth (Ntotal = 172). The performance of the in-house method was compared to an externally developed algorithm on a separate test subset (N = 66). Results: The final algorithm was available at day 10 and achieved human-like performance (Dice coefficient = 0.97). For opacity quantification, a slight underestimation was seen both for the in-house (1.8 %) and for the external algorithm (0.9 %). In contrast to the external reference, the underestimation for the in-house algorithm showed no dependency on total opacity load, making it more suitable for follow-up. Conclusions: The combination of machine learning and a clinically embedded software development platform enabled time-efficient development, instant deployment, and rapid adoption in clinical routine. The algorithm for fully automated lung segmentation and opacity quantification that we developed in the midst of the COVID19 pandemic was ready for clinical use within just 10 days and achieved human-level performance even in complex cases. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-28T15:13:18Z |
dc.date.available.none.fl_str_mv |
2020-09-28T15:13:18Z |
dc.date.created.none.fl_str_mv |
2020 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
0720-048X |
dc.identifier.other.spa.fl_str_mv |
https://doi.org/10.1016/j.ejrad.2020.109233 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/13891 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.ejrad.2020.109233 |
identifier_str_mv |
0720-048X |
url |
https://doi.org/10.1016/j.ejrad.2020.109233 http://hdl.handle.net/20.500.12010/13891 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
European Journal of Radiology |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13891/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13891/3/Development-and-clinical-implementation-of-tailored-image-anal_2020_European.pdf.jpg |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f 02bb4c5067ac444136c3d5035e31fe3a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213735360757760 |
spelling |
2020-09-28T15:13:18Z2020-09-28T15:13:18Z20200720-048Xhttps://doi.org/10.1016/j.ejrad.2020.109233http://hdl.handle.net/20.500.12010/13891https://doi.org/10.1016/j.ejrad.2020.109233Purpose: During the emerging COVID-19 pandemic, radiology departments faced a substantial increase in chest CT admissions coupled with the novel demand for quantification of pulmonary opacities. This article describes how our clinic implemented an automated software solution for this purpose into an established software platform in 10 days. The underlying hypothesis was that modern academic centers in radiology are capable of developing and implementing such tools by their own efforts and fast enough to meet the rapidly increasing clinical needs in the wake of a pandemic. Method: Deep convolutional neural network algorithms for lung segmentation and opacity quantification on chest CTs were trained using semi-automatically and manually created ground-truth (Ntotal = 172). The performance of the in-house method was compared to an externally developed algorithm on a separate test subset (N = 66). Results: The final algorithm was available at day 10 and achieved human-like performance (Dice coefficient = 0.97). For opacity quantification, a slight underestimation was seen both for the in-house (1.8 %) and for the external algorithm (0.9 %). In contrast to the external reference, the underestimation for the in-house algorithm showed no dependency on total opacity load, making it more suitable for follow-up. Conclusions: The combination of machine learning and a clinically embedded software development platform enabled time-efficient development, instant deployment, and rapid adoption in clinical routine. The algorithm for fully automated lung segmentation and opacity quantification that we developed in the midst of the COVID19 pandemic was ready for clinical use within just 10 days and achieved human-level performance even in complex cases.7 páginasapplication/pdfengEuropean Journal of Radiologyreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoComputed tomographyCOVID-19Machine learningSoftwareSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusDevelopment and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learningArtículohttp://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Anastasopoulos, ConstantinWeikert, ThomasYang, ShanAbdulkadir, AhmedSchmülling, LenaBühler, ClaudiaPaciolla, FabianoSexauer, RaphaelCyriac, JoshyNesic, IvanTwerenbold, RaphaelBremerich, JensStieltjes, BramSauter, Alexander W.Sommer, GregorLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13891/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILDevelopment-and-clinical-implementation-of-tailored-image-anal_2020_European.pdf.jpgDevelopment-and-clinical-implementation-of-tailored-image-anal_2020_European.pdf.jpgIM Thumbnailimage/jpeg15393https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13891/3/Development-and-clinical-implementation-of-tailored-image-anal_2020_European.pdf.jpg02bb4c5067ac444136c3d5035e31fe3aMD53open access20.500.12010/13891oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/138912021-03-17 20:22:07.269metadata only accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |