COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images

The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients....

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12106
Acceso en línea:
https://doi.org/10.1016/j.mehy.2020.109761
http://hdl.handle.net/20.500.12010/12106
Palabra clave:
Coronavirus Disease 2019
SARS-CoV-2
Rapid Diagnosis of COVID-19
Deep Learning
Bayesian Optimization
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Acceso restringido
id UTADEO2_ab702e0ff93ad44a55c1fe766e9b7d78
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12106
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
title COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
spellingShingle COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
Coronavirus Disease 2019
SARS-CoV-2
Rapid Diagnosis of COVID-19
Deep Learning
Bayesian Optimization
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
title_short COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
title_full COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
title_fullStr COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
title_full_unstemmed COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
title_sort COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
dc.subject.spa.fl_str_mv Coronavirus Disease 2019
SARS-CoV-2
Rapid Diagnosis of COVID-19
Deep Learning
Bayesian Optimization
topic Coronavirus Disease 2019
SARS-CoV-2
Rapid Diagnosis of COVID-19
Deep Learning
Bayesian Optimization
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
dc.subject.lemb.spa.fl_str_mv Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
description The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients. Most of the initial tests rely on detecting the genetic material of the coronavirus, and they have a poor detection rate with the time-consuming operation. In the ongoing process, radiological imaging is also preferred where chest X-rays are highlighted in the diagnosis. Early studies express the patients with an abnormality in chest X-rays pointing to the presence of the COVID-19. On this motivation, there are several studies cover the deep learning-based solutions to detect the COVID-19 using chest X-rays. A part of the existing studies use non-public datasets, others perform on complicated Artificial Intelligent (AI) structures. In our study, we demonstrate an AI-based structure to outperform the existing studies. The SqueezeNet that comes forward with its light network design is tuned for the COVID-19 diagnosis with Bayesian optimization additive. Fine-tuned hyperparameters and augmented dataset make the proposed network perform much better than existing network designs and to obtain a higher COVID-19 diagnosis accuracy.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-21T19:51:59Z
dc.date.available.none.fl_str_mv 2020-08-21T19:51:59Z
dc.date.created.none.fl_str_mv 2020
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 0306-9877
dc.identifier.other.spa.fl_str_mv https://doi.org/10.1016/j.mehy.2020.109761
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/12106
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.mehy.2020.109761
identifier_str_mv 0306-9877
url https://doi.org/10.1016/j.mehy.2020.109761
http://hdl.handle.net/20.500.12010/12106
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv Acceso restringido
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv text/html
dc.publisher.spa.fl_str_mv Medical Hypotheses
dc.source.spa.fl_str_mv reponame:Expeditio Repositorio Institucional UJTL
instname:Universidad de Bogotá Jorge Tadeo Lozano
instname_str Universidad de Bogotá Jorge Tadeo Lozano
institution Universidad de Bogotá Jorge Tadeo Lozano
reponame_str Expeditio Repositorio Institucional UJTL
collection Expeditio Repositorio Institucional UJTL
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/1/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/3/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/4/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/5/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpg
bitstream.checksum.fl_str_mv 9a5a421c94490e247da591768aea5e18
31f3b296c2d0d01c79a9e226e70f5ec5
abceeb1c943c50d3343516f9dbfc110f
9a5a421c94490e247da591768aea5e18
989b0b3aed7d9bbcd40a3910aed30141
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213790308237312
spelling 2020-08-21T19:51:59Z2020-08-21T19:51:59Z20200306-9877https://doi.org/10.1016/j.mehy.2020.109761http://hdl.handle.net/20.500.12010/12106https://doi.org/10.1016/j.mehy.2020.109761The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients. Most of the initial tests rely on detecting the genetic material of the coronavirus, and they have a poor detection rate with the time-consuming operation. In the ongoing process, radiological imaging is also preferred where chest X-rays are highlighted in the diagnosis. Early studies express the patients with an abnormality in chest X-rays pointing to the presence of the COVID-19. On this motivation, there are several studies cover the deep learning-based solutions to detect the COVID-19 using chest X-rays. A part of the existing studies use non-public datasets, others perform on complicated Artificial Intelligent (AI) structures. In our study, we demonstrate an AI-based structure to outperform the existing studies. The SqueezeNet that comes forward with its light network design is tuned for the COVID-19 diagnosis with Bayesian optimization additive. Fine-tuned hyperparameters and augmented dataset make the proposed network perform much better than existing network designs and to obtain a higher COVID-19 diagnosis accuracy.12 páginastext/htmlengMedical Hypothesesreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoCoronavirus Disease 2019SARS-CoV-2Rapid Diagnosis of COVID-19Deep LearningBayesian OptimizationSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusCOVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray imagesArtículohttp://purl.org/coar/resource_type/c_6501Acceso restringidohttp://purl.org/coar/access_right/c_f1cfUcar, FerhatKorkmaz, DenizORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png153579https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/1/Captura.PNG9a5a421c94490e247da591768aea5e18MD51open accessCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdfCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdfArtículo reservadoapplication/pdf1906550https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/3/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf31f3b296c2d0d01c79a9e226e70f5ec5MD53embargoed access|||2200-08-21LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png153579https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/4/Captura.PNG9a5a421c94490e247da591768aea5e18MD54open accessCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpgCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpgIM Thumbnailimage/jpeg21262https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/5/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpg989b0b3aed7d9bbcd40a3910aed30141MD55open access20.500.12010/12106oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/121062020-08-21 14:51:59.187open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==