COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients....
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12106
- Acceso en línea:
- https://doi.org/10.1016/j.mehy.2020.109761
http://hdl.handle.net/20.500.12010/12106
- Palabra clave:
- Coronavirus Disease 2019
SARS-CoV-2
Rapid Diagnosis of COVID-19
Deep Learning
Bayesian Optimization
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Acceso restringido
id |
UTADEO2_ab702e0ff93ad44a55c1fe766e9b7d78 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12106 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
title |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
spellingShingle |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images Coronavirus Disease 2019 SARS-CoV-2 Rapid Diagnosis of COVID-19 Deep Learning Bayesian Optimization Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
title_full |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
title_fullStr |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
title_full_unstemmed |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
title_sort |
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images |
dc.subject.spa.fl_str_mv |
Coronavirus Disease 2019 SARS-CoV-2 Rapid Diagnosis of COVID-19 Deep Learning Bayesian Optimization |
topic |
Coronavirus Disease 2019 SARS-CoV-2 Rapid Diagnosis of COVID-19 Deep Learning Bayesian Optimization Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients. Most of the initial tests rely on detecting the genetic material of the coronavirus, and they have a poor detection rate with the time-consuming operation. In the ongoing process, radiological imaging is also preferred where chest X-rays are highlighted in the diagnosis. Early studies express the patients with an abnormality in chest X-rays pointing to the presence of the COVID-19. On this motivation, there are several studies cover the deep learning-based solutions to detect the COVID-19 using chest X-rays. A part of the existing studies use non-public datasets, others perform on complicated Artificial Intelligent (AI) structures. In our study, we demonstrate an AI-based structure to outperform the existing studies. The SqueezeNet that comes forward with its light network design is tuned for the COVID-19 diagnosis with Bayesian optimization additive. Fine-tuned hyperparameters and augmented dataset make the proposed network perform much better than existing network designs and to obtain a higher COVID-19 diagnosis accuracy. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-21T19:51:59Z |
dc.date.available.none.fl_str_mv |
2020-08-21T19:51:59Z |
dc.date.created.none.fl_str_mv |
2020 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0306-9877 |
dc.identifier.other.spa.fl_str_mv |
https://doi.org/10.1016/j.mehy.2020.109761 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/12106 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.mehy.2020.109761 |
identifier_str_mv |
0306-9877 |
url |
https://doi.org/10.1016/j.mehy.2020.109761 http://hdl.handle.net/20.500.12010/12106 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Acceso restringido http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
text/html |
dc.publisher.spa.fl_str_mv |
Medical Hypotheses |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/1/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/3/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/4/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/5/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpg |
bitstream.checksum.fl_str_mv |
9a5a421c94490e247da591768aea5e18 31f3b296c2d0d01c79a9e226e70f5ec5 abceeb1c943c50d3343516f9dbfc110f 9a5a421c94490e247da591768aea5e18 989b0b3aed7d9bbcd40a3910aed30141 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213790308237312 |
spelling |
2020-08-21T19:51:59Z2020-08-21T19:51:59Z20200306-9877https://doi.org/10.1016/j.mehy.2020.109761http://hdl.handle.net/20.500.12010/12106https://doi.org/10.1016/j.mehy.2020.109761The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients. Most of the initial tests rely on detecting the genetic material of the coronavirus, and they have a poor detection rate with the time-consuming operation. In the ongoing process, radiological imaging is also preferred where chest X-rays are highlighted in the diagnosis. Early studies express the patients with an abnormality in chest X-rays pointing to the presence of the COVID-19. On this motivation, there are several studies cover the deep learning-based solutions to detect the COVID-19 using chest X-rays. A part of the existing studies use non-public datasets, others perform on complicated Artificial Intelligent (AI) structures. In our study, we demonstrate an AI-based structure to outperform the existing studies. The SqueezeNet that comes forward with its light network design is tuned for the COVID-19 diagnosis with Bayesian optimization additive. Fine-tuned hyperparameters and augmented dataset make the proposed network perform much better than existing network designs and to obtain a higher COVID-19 diagnosis accuracy.12 páginastext/htmlengMedical Hypothesesreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoCoronavirus Disease 2019SARS-CoV-2Rapid Diagnosis of COVID-19Deep LearningBayesian OptimizationSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusCOVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray imagesArtículohttp://purl.org/coar/resource_type/c_6501Acceso restringidohttp://purl.org/coar/access_right/c_f1cfUcar, FerhatKorkmaz, DenizORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png153579https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/1/Captura.PNG9a5a421c94490e247da591768aea5e18MD51open accessCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdfCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdfArtículo reservadoapplication/pdf1906550https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/3/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf31f3b296c2d0d01c79a9e226e70f5ec5MD53embargoed access|||2200-08-21LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png153579https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/4/Captura.PNG9a5a421c94490e247da591768aea5e18MD54open accessCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpgCOVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpgIM Thumbnailimage/jpeg21262https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12106/5/COVIDiagnosis-Net--Deep-Bayes-SqueezeNet-based-diagnosis-of-t_2020_Medical-H.pdf.jpg989b0b3aed7d9bbcd40a3910aed30141MD55open access20.500.12010/12106oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/121062020-08-21 14:51:59.187open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |