Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores
Las tecnologías de almacenamiento de energía electroquímicas, junto con el desarrollo de materiales constituyen enfoques prometedores para abordar los desafíos en el suministro de energía, considerando que las necesidades energéticas globales se duplicarán hacia mediados del siglo XXI y se triplicar...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- spa
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/5519
- Acceso en línea:
- http://hdl.handle.net/20.500.12010/5519
- Palabra clave:
- Cascarilla de cacao
Material carbonoso
Supercapacitores
Electrodos
Capacitancia
Química, Ingeniería
Química
Soluciones (Química)
Almacenamiento de energía
Generación de energía
Acumuladores
Cocoa husk
Carbon material
Supercapacitors
Electrodes and Capacitance
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_9f33ae534268f85be9e24597df4a0c98 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/5519 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
title |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
spellingShingle |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores Cascarilla de cacao Material carbonoso Supercapacitores Electrodos Capacitancia Química, Ingeniería Química Soluciones (Química) Almacenamiento de energía Generación de energía Acumuladores Cocoa husk Carbon material Supercapacitors Electrodes and Capacitance |
title_short |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
title_full |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
title_fullStr |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
title_full_unstemmed |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
title_sort |
Obtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitores |
dc.contributor.advisor.none.fl_str_mv |
Conde Rivera, Laura Rosa López Suárez, Franz Edwin |
dc.subject.spa.fl_str_mv |
Cascarilla de cacao Material carbonoso Supercapacitores Electrodos Capacitancia |
topic |
Cascarilla de cacao Material carbonoso Supercapacitores Electrodos Capacitancia Química, Ingeniería Química Soluciones (Química) Almacenamiento de energía Generación de energía Acumuladores Cocoa husk Carbon material Supercapacitors Electrodes and Capacitance |
dc.subject.lemb.spa.fl_str_mv |
Química, Ingeniería Química Soluciones (Química) Almacenamiento de energía Generación de energía Acumuladores |
dc.subject.keyword.spa.fl_str_mv |
Cocoa husk Carbon material Supercapacitors Electrodes and Capacitance |
description |
Las tecnologías de almacenamiento de energía electroquímicas, junto con el desarrollo de materiales constituyen enfoques prometedores para abordar los desafíos en el suministro de energía, considerando que las necesidades energéticas globales se duplicarán hacia mediados del siglo XXI y se triplicarán para el año 2100. Ante estos retos, se sugiere el desarrollo de un material carbonoso con alta área superficial, a partir de cascarilla de cacao, residuo lignocelulósico de gran abundancia en Colombia; para desarrollar el material se utilizó un diseño factorial 3^2, preparando muestras mediante impregnación del precursor con KOH en proporciones de agente/sólido de 1:1, 3:1 y 5:1, con temperaturas de carbonización de 500, 650 y 800 °C; los materiales carbonosos se caracterizaron a través de isotermas de adsorción de N2 a 77 K, espectroscopía fotoelectrónica de rayos-X (XPS), espectroscopía Raman y difracción de rayos-X (DRX). La capacitancia específica de las muestras con mayor área superficial se determinó a partir de voltametría cíclica usando HCl 1M como electrolito a velocidad de barrido de 100 mV/s. La capacitancia más alta fue de 196 F/g, con la muestra obtenida a una relación de impregnación 5:1 y temperatura de carbonización de 650 °C; muestra que presentó el área superficial específica más alta (1443 m2/g), el menor contenido de cenizas, el mayor grado de grafitización según los resultados del análisis Raman, la mayor presencia de estructuras grafíticas confirmando una estructura más organizada de acuerdo con los ensayos de DRX, lo que condujo a una alta conductividad eléctrica; a su vez, esta muestra tuvo la proporción más alta de enlaces C-OH y C=O asociados con grupos oxigenados tipo carboxilos, carbonilos y quinonas según la espectroscopía XPS, los cuales pudieron favorecer la pseudocapacitancia y en consecuencia el almacenamiento de energía. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-01-28T17:20:26Z |
dc.date.available.none.fl_str_mv |
2019-01-28T17:20:26Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/5519 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Bogotá Jorge Tadeo Lozano |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozano |
url |
http://hdl.handle.net/20.500.12010/5519 |
identifier_str_mv |
instname:Universidad de Bogotá Jorge Tadeo Lozano reponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozano |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Baena, L. M., & Garcia Cardona, N. A. (2012). OBTENCIÓN Y CARACTERIZACIÓN DE FIBRA DIETARÍA A PARTIR DE CASCARILLA DE LAS SEMILLAS TOSTADAS DE Theobroma cacao L. DE UNA INDUSTRIA CHOCOLATERA COLOMBIANA. Balathanigaimani, M. S., Shim, W.-G., Lee, M.-J., Kim, C., Lee, J.-W., & Moon, H. (2008). Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10(6), 868–871. https://doi.org/10.1016/j.elecom.2008.04.003 Bleda-Martínez, M. J., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D., & Linares-Solano, A. (2006). Chemical and electrochemical characterization of porous carbon materials. Carbon, 44(13), 2642–2651. https://doi.org/https://doi.org/10.1016/j.carbon.2006.04.017 Brender, P., Gadiou, R., Rietsch, J.-C., Fioux, P., Dentzer, J., Ponche, A., & Vix-Guterl, C. (2012). Characterization of Carbon Surface Chemistry by Combined Temperature Programmed Desorption with in Situ X-ray Photoelectron Spectrometry and Temperature Programmed Desorption with Mass Spectrometry Analysis. Analytical Chemistry, 84(5), 2147–2153. https://doi.org/10.1021/ac102244b Carrasco-Marin, F., Lopez-Ramon, M. V, & Moreno-Castilla, C. (1993). Applicability of the Dubinin-Radushkevich equation to carbon dioxide adsorption on activated carbons. Langmuir, 9(11), 2758–2760. https://doi.org/10.1021/la00035a002 Chen, H., Guo, Y., Wang, F., Wang, G., Qi, P., Guo, X., … Yu, F. (2017). An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Materials, 32(6), 592–599. https://doi.org/https://doi.org/10.1016/S1872-5805(17)60140-9 Choi, W.-S., Shim, W.-G., Ryu, D.-W., Hwang, M.-J., & Moon, H. (2012). Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous and Mesoporous Materials, 155(Supplement C), 274–280. https://doi.org/https://doi.org/10.1016/j.micromeso.2012.01.006 Compendium, M., & Ii, V. (2006). Ta Instruments. Chemical , 84(42), ibc. https://doi.org/10.1021/cen-v084n042.ibc Conte, M. (2010). Supercapacitors Technical Requirements for New Applications. Fuel Cells, 10(5), 806–818. https://doi.org/10.1002/fuce.201000087 Curia, M. V. (2010). Técnicas de caracterización, conceptos generales. Estudio Fisicoquímico y Catalítico Del Sistema Mn-O-V, 209. Retrieved from http://sedici.unlp.edu.ar/handle/10915/2681 Du, S., Wang, L., Fu, X., Chen, M., & Wang, C. (2013). Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Bioresource Technology, 139(Supplement C), 406–409. https://doi.org/https://doi.org/10.1016/j.biortech.2013.04.085 Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219–228. https://doi.org/https://doi.org/10.1016/j.electacta.2017.01.152 Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185–190. https://doi.org/10.1016/j.biortech.2012.02.010 Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., … Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261. https://doi.org/10.1016/j.biortech.2013.01.044 Frackowiak, E. (2007). Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 9(15), 1774–1785. https://doi.org/10.1039/b618139m Frackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39(6), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4 Gao, S., Chen, Y., Fan, H., Wei, X., Hu, C., Luo, H., & Qu, L. (2014). Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. Journal of Materials Chemistry A, 2(10), 3317. https://doi.org/10.1039/c3ta14281g Gao, X., Xing, W., Zhou, J., Wang, G., Zhuo, S., Liu, Z., … Yan, Z. (2014). Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochimica Acta, 133, 459–466. https://doi.org/10.1016/j.electacta.2014.04.101 Garc, R. M., Tutora, V., & Oc, P. (2015). Diseño y caracterización de supercondensadores de alta energía basados en materiales carbonosos. https://doi.org/10.1186/1477-7819-3-17 Garc, R. M., Tutora, V., & Oc, P. (2015). Diseño y caracterización de supercondensadores de alta energía basados en materiales carbonosos. https://doi.org/10.1186/1477-7819-3-17 Hernández, M., Otero, A., Falcón, J., & Yperman III, Y. (2017). Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO 3 Physiochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO 3, 29(1), 26–38. Hernández, M., Otero, A., Falcón, J., & Yperman III, Y. (2017). Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO 3 Physiochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO 3, 29(1), 26–38. Inal, I. I. G., Holmes, S. M., Banford, A., & Aktas, Z. (2015). The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Science, 357, 696–703. https://doi.org/https://doi.org/10.1016/j.apsusc.2015.09.067 Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-A review. Renewable and Sustainable Energy Reviews, 11(9), 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013 Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., & Yi, B. (2013). High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon, 56, 146–154. https://doi.org/10.1016/j.carbon.2012.12.085 Karnan, M., Subramani, K., Srividhya, P. K., & Sathish, M. (2017). Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochimica Acta, 228, 586–596. https://doi.org/10.1016/j.electacta.2017.01.095 Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook of Clean Energy Systems, 1–25. https://doi.org/10.1002/9781118991978.hces112 Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook of Clean Energy Systems, 1–25. https://doi.org/10.1002/9781118991978.hces112 Le Van, K., & Luong Thi, T. T. (2014b). Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24(3), 191–198. https://doi.org/10.1016/j.pnsc.2014.05.012 Lee, S. G., Park, K. H., Shim, W. G., balathanigaimani, M. S., & Moon, H. (2011). Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. Journal of Industrial and Engineering Chemistry, 17(3), 450–454. https://doi.org/10.1016/j.jiec.2010.10.025 Lee, S. G., Park, K. H., Shim, W. G., Balathanigaimani, M. S., & Moon, H. (2011). Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. Journal of Industrial and Engineering Chemistry, 17(3), 450–454. https://doi.org/10.1016/j.jiec.2010.10.025 Li, X., Han, C., Chen, X., & Shi, C. (2010). Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous and Mesoporous Materials, 131(1–3), 303–309. https://doi.org/10.1016/j.micromeso.2010.01.007 Li, X., & Wei, B. (2013). Supercapacitors based on nanostructured carbon. Nano Energy, 2(2), 159–173. https://doi.org/https://doi.org/10.1016/j.nanoen.2012.09.008 Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., & Lu, G.-Q. (2011). Preparation of capacitor’s electrode from sunflower seed shell. Bioresource Technology, 102(2), 1118–1123. https://doi.org/https://doi.org/10.1016/j.biortech.2010.08.110 Liew, R. K., Azwar, E., Yek, P. N. Y., Lim, X. Y., Cheng, C. K., Ng, J. H., … Lam, S. S. (2018). Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource Technology, 266, 1–10. https://doi.org/10.1016/j.biortech.2018.06.051 Lin, G., Ma, R., Zhou, Y., Liu, Q., Dong, X., & Wang, J. (2018). KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochimica Acta, 261, 49–57. https://doi.org/https://doi.org/10.1016/j.electacta.2017.12.107 Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H., & Wang, Y. (2016). A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 112, 1190–1198. https://doi.org/10.1016/j.jclepro.2015.07.005 Liu, L., Niu, Z., & Chen, J. (2018). Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2018.01.013 Lobato, B., Vretenár, V., Kotrusz, P., Hulman, M., & Centeno, T. A. (2015). Reduced graphite oxide in supercapacitor electrodes. Journal of Colloid and Interface Science, 446, 203–207. https://doi.org/https://doi.org/10.1016/j.jcis.2015.01.037 López-Suárez, F. E., Bueno-López, A., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2014). Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order. Journal of Power Sources, 268, 225–232. https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.06.042 Lua, A. C., & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid and Interface Science, 274(2), 594–601. https://doi.org/10.1016/j.jcis.2003.10.001 Luna, D., González, a, Gordón, M., & Martín, N. (2007). Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64, 39–48. https://doi.org/000700407 Martínez, M. (2012). Preparación y caracterización de carbón activado a partir de lignita para su aplicación en procesos de descontaminación de aguas., 1–280. Ministerio de Agricultura y Desarrollo Rural. (2008). Plan de Desarrollo Cacaotero 2012-2021. Conecta Rural, 30. Mojica, L., Ramirez, W., Rincón, N., Blanco, D., Giraldo, L., & Moreno, J. (2012). Síntesis de carbón activado proveniente de semillas de Eucalipto por activación física y química. Afinidad LXIX, 69(559), 203–210. Montenegro Orozco, K. T., Rojas Carpio, A. S., Cabeza Rojas, I., & Hernández Pardo, M. A. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Ion, 29(2), 23–36. https://doi.org/http://dx.doi.org/10.18273/revion.v29n2-2016002 Mozammel, H. M., Masahiro, O., & SC, B. (2002). Activated charcoal from coconut shell using ZnCl2 activation. Biomass and Bioenergy, 22(5), 397–400. https://doi.org/https://doi.org/10.1016/S0961-9534(02)00015-6 Olivares-Marín, M., Fernández, J. A., Lázaro, M. J., Fernández-González, C., Macías-García, A., Gómez-Serrano, V., … Centeno, T. A. (2009). Cherry stones as precursor of activated carbons for supercapacitors. Materials Chemistry and Physics, 114(1), 323–327. https://doi.org/10.1016/j.matchemphys.2008.09.010 Olivares, M., Fernández, C., Macías, A., & Gómez, V. (2006). Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Applied Surface Science, 252(17), 5980–5983. Omri, A., & Benzina, M. (2012). Characterization of Activated Carbon Prepared from a New Raw Lignocellulosic Material : Ziziphus Spina-Christi Seeds. Journal de La Société Chimique de Tunisie, 14, 175–183. Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. Peng, C., Yan, X. Bin, Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401–408. https://doi.org/10.1016/j.electacta.2012.09.082 Prías Barragán, J. J., Echeverry Montoya, N. A., & Ariza Calderón, H. (2015). Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(153), 444–449. https://doi.org/10.18257/raccefyn.139 Rico-Pérez, V., & Bueno-López, A. (2014). Effect of RhOx/CeO2 Calcination on Metal-Support Interaction and Catalytic Activity for N2O Decomposition. Applied Sciences, 4(3), 468–481. https://doi.org/10.3390/app4030468 Rodríguez, P., Giraldo, L., & Moreno, J. C. (2010). INFLUENCIA DEL pH SOBRE LA ADSORCIÓN EN CARBÓN ACTIVADO DE Cd(II) Y Ni(II) DESDE SOLUCIONES ACUOSAS. Revista Colombiana de Química; Vol. 39, Núm. 3 (2010). Rouquerol, F., Rouquerol, J., Sing, K. S. ., Llewellyn, P., & Maurin, G. (2014). ADSORPTION by Power and Porous Solids Principles, Methodology and Applications. (Elsevier, Ed.) (second). London, New York, Paris, Tokyo. Sevilla, M., & Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 7(4), 1250–1280. https://doi.org/10.1039/C3EE43525C Skoog Douglas A.,Holler James H., N. T. A. (2007). Principios de Ánalisis Instrumental. 6 Edicción. Tatiana, K., Orozco, M., Sofía, A., Carpio, R., Rojas, I. C., & Andrés, M. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca Biogas potential of agro-industrial residues generated in the department of Cundinamarca Potencial do biogás dos residuos agro-industriais gerados no departa, 29(2), 23–36. Teo, E. Y. L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110–119. https://doi.org/https://doi.org/10.1016/j.electacta.2016.01.140 Tooming, T., Thomberg, T., Kurig, H., Jänes, A., & Lust, E. (2015). High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Power Sources, 280, 667–677. https://doi.org/10.1016/j.jpowsour.2015.01.157 Valle, U., Nelson, G., Wandy, M., Lizeth, C., Diego, A., Juan, C., … Diego, A. (2014). chemical activation with H 3 PO 4 . Characterization and evaluation of. Valle, U., Nelson, G., Wandy, M., Lizeth, C., Diego, A., Juan, C., … Diego, A. (2014). chemical activation with H 3 PO 4 . Characterization and evaluation of. Viades, J. (2013). FENÓMENOS DE SUPERFICIE. ADSORCIÓN, (514), 1–17. Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797–828. https://doi.org/10.1039/C1CS15060J Wang, J., & Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45), 23710. https://doi.org/10.1039/c2jm34066f Wang, K., Zhao, N., Lei, S., Yan, R., Tian, X., Wang, J., … Liu, L. (2015). Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta, 166, 1–11. https://doi.org/10.1016/j.electacta.2015.03.048 Elie Paillard. (2009). Carbon: Electrochemical and physicochemical properties. New York: K Kinoshita, Carbon. Wu, F.-C., Tseng, R.-L., Hu, C.-C., & Wang, C.-C. (2005). Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources, 144(1), 302–309. https://doi.org/https://doi.org/10.1016/j.jpowsour.2004.12.020 Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015a). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051 Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015b). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051 Yin, L., Chen, Y., Li, D., Zhao, X., Hou, B., & Cao, B. (2016). 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Materials and Design, 111, 44–50. https://doi.org/10.1016/j.matdes.2016.08.070 Zainal, N. H., Aziz, A. A., Idris, J., Jalani, N. F., Mamat, R., Ibrahim, M. F., … Abd-Aziz, S. (2018). Reduction of POME final discharge residual using activated bioadsorbent from oil palm kernel shell. Journal of Cleaner Production, 182, 830–837. https://doi.org/10.1016/j.jclepro.2018.02.110 Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., … Gupta, R. K. (2017). High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach. Scientific Reports, Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., … Gupta, R. K. (2017). High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach. Scientific Reports, Zhang, L. L., Lei, Z., Zhang, J., Tian, X., & Zhao, X. S. (2011). Supercapacitors: Electrode Materials Aspects. Encyclopedia of Inorganic Chemistry. https://doi.org/10.1002/0470862106.ia816 Zhang, L. L., Lei, Z., Zhang, J., Tian, X., & Zhao, X. S. (2011). Supercapacitors: Electrode Materials Aspects. Encyclopedia of Inorganic Chemistry. https://doi.org/10.1002/0470862106.ia816 Zhao, Y., Ran, W., He, J., Song, Y., Zhang, C., Xiong, D. B., … Xia, Y. (2015). Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Applied Materials and Interfaces, 7(2), 1132–1139. https://doi.org/10.1021/am506815f Zhu, J., Xu, Y., Wang, J., Lin, J., Sun, X., & Mao, S. (2015). The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Physical Chemistry Chemical Physics, 17(43), 28666–28673. https://doi.org/10.1039/c5cp04080a Zhu, M., Weber, C. J., Yang, Y., Konuma, M., Starke, U., Kern, K., & Bittner, A. M. (2008). Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon, 46(14), 1829–1840. https://doi.org/10.1016/j.carbon.2008.07.025 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_16ec |
dc.format.extent.spa.fl_str_mv |
43 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bogotá D.C., Colombia |
dc.publisher.spa.fl_str_mv |
Universidad de Bogotá Jorge Tadeo Lozano |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Naturales e Ingeniería |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/1/Documento%20reservado%20temporalmente%20por%20solicitud%20del%20autor.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/3/Trabajo%20de%20Grado%20Cacao.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/4/Autorizaci%c3%b3n%20de%20Publicaci%c3%b3n%20de%20Forma%20Confidencial.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/5/Documento%20reservado%20temporalmente%20por%20solicitud%20del%20autor.pdf.jpg https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/6/Trabajo%20de%20Grado%20Cacao.pdf.jpg |
bitstream.checksum.fl_str_mv |
e2ad910b43a3ea8b63bd41e4ff89a557 4c621c08181ee36f6f413a518ce762e3 abceeb1c943c50d3343516f9dbfc110f ad97778719b3e2c25d31ef0d9f8619f6 e5b266bbb5ce23d8d87d1a4e5a49f712 6688540481316f2cd8c0eb5699fa0d91 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213771734810624 |
spelling |
Conde Rivera, Laura RosaLópez Suárez, Franz EdwinIbagón Franco, Leidy GinethBogotá D.C., Colombia2019-01-28T17:20:26Z2019-01-28T17:20:26Z2018http://hdl.handle.net/20.500.12010/5519instname:Universidad de Bogotá Jorge Tadeo Lozanoreponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo LozanoLas tecnologías de almacenamiento de energía electroquímicas, junto con el desarrollo de materiales constituyen enfoques prometedores para abordar los desafíos en el suministro de energía, considerando que las necesidades energéticas globales se duplicarán hacia mediados del siglo XXI y se triplicarán para el año 2100. Ante estos retos, se sugiere el desarrollo de un material carbonoso con alta área superficial, a partir de cascarilla de cacao, residuo lignocelulósico de gran abundancia en Colombia; para desarrollar el material se utilizó un diseño factorial 3^2, preparando muestras mediante impregnación del precursor con KOH en proporciones de agente/sólido de 1:1, 3:1 y 5:1, con temperaturas de carbonización de 500, 650 y 800 °C; los materiales carbonosos se caracterizaron a través de isotermas de adsorción de N2 a 77 K, espectroscopía fotoelectrónica de rayos-X (XPS), espectroscopía Raman y difracción de rayos-X (DRX). La capacitancia específica de las muestras con mayor área superficial se determinó a partir de voltametría cíclica usando HCl 1M como electrolito a velocidad de barrido de 100 mV/s. La capacitancia más alta fue de 196 F/g, con la muestra obtenida a una relación de impregnación 5:1 y temperatura de carbonización de 650 °C; muestra que presentó el área superficial específica más alta (1443 m2/g), el menor contenido de cenizas, el mayor grado de grafitización según los resultados del análisis Raman, la mayor presencia de estructuras grafíticas confirmando una estructura más organizada de acuerdo con los ensayos de DRX, lo que condujo a una alta conductividad eléctrica; a su vez, esta muestra tuvo la proporción más alta de enlaces C-OH y C=O asociados con grupos oxigenados tipo carboxilos, carbonilos y quinonas según la espectroscopía XPS, los cuales pudieron favorecer la pseudocapacitancia y en consecuencia el almacenamiento de energía.#Cacao#IngenieríaQuímica#CapacitoresRequerimientos de sistema: Adobe Acrobat ReaderThe electrochemical energy storage technologies, together with the development of materials, are promising ways to face the global challenges related to energy supply considering that global energy needs will double by the middle of the 21st century and will triple for the year 2100. Given these challenges, it is suggested the development of a high surface area carbonaceous material , using cocoa husk as precursor, an abundant lignocellulosic residue from Colombia; to develop the material, a 3^2 factorial design was used, preparing samples by impregnating the precursor with KOH at agent/solid ratios of 1:1, 3:1 and 5:1, and carbonization temperatures of 500, 650 and 800 °C; the carbonaceous materials were characterized through N2 adsorption isotherms at 77 K, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and X-ray diffraction (XRD). The specific capacitance of the samples with higher specific surface area, was determined from cyclic voltammetry experiments using 1M HCl as electrolyte and 100 mV/s scanning speed. The highest capacitance was 196 F/g, with the sample obtained at a 5:1 impregnation ratio and carbonization temperature of 650 °C; it was the sample with the highest specific surface area (1443 m2/g), the lowest ash content, the greater degree of graphitization according to Raman analysis, the more ordered structure according to the presence of graphitic signals stablished through the XRD tests, which could led to higher electrical conductivity; also, according to XPS spectroscopy, this sample had the highest proportion of C-OH and C=O bonds associated with oxygenated carboxyl, carbonyl and quinone groups, which would favor the pseudocapacitance and consequently the energy storage.Ingeniero Químico43 páginasapplication/pdfspaUniversidad de Bogotá Jorge Tadeo LozanoIngeniería QuímicaFacultad de Ciencias Naturales e IngenieríaCascarilla de cacaoMaterial carbonosoSupercapacitoresElectrodosCapacitanciaQuímica, IngenieríaQuímicaSoluciones (Química)Almacenamiento de energíaGeneración de energíaAcumuladoresCocoa huskCarbon materialSupercapacitorsElectrodes and CapacitanceObtención de materiales carbonosos a partir de la cascarilla de cacao para la aplicación como electrodos en supercapacitoresTrabajo de gradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_16ecBaena, L. M., & Garcia Cardona, N. A. (2012). OBTENCIÓN Y CARACTERIZACIÓN DE FIBRA DIETARÍA A PARTIR DE CASCARILLA DE LAS SEMILLAS TOSTADAS DE Theobroma cacao L. DE UNA INDUSTRIA CHOCOLATERA COLOMBIANA.Balathanigaimani, M. S., Shim, W.-G., Lee, M.-J., Kim, C., Lee, J.-W., & Moon, H. (2008). Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10(6), 868–871. https://doi.org/10.1016/j.elecom.2008.04.003Bleda-Martínez, M. J., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D., & Linares-Solano, A. (2006). Chemical and electrochemical characterization of porous carbon materials. Carbon, 44(13), 2642–2651. https://doi.org/https://doi.org/10.1016/j.carbon.2006.04.017Brender, P., Gadiou, R., Rietsch, J.-C., Fioux, P., Dentzer, J., Ponche, A., & Vix-Guterl, C. (2012). Characterization of Carbon Surface Chemistry by Combined Temperature Programmed Desorption with in Situ X-ray Photoelectron Spectrometry and Temperature Programmed Desorption with Mass Spectrometry Analysis. Analytical Chemistry, 84(5), 2147–2153. https://doi.org/10.1021/ac102244bCarrasco-Marin, F., Lopez-Ramon, M. V, & Moreno-Castilla, C. (1993). Applicability of the Dubinin-Radushkevich equation to carbon dioxide adsorption on activated carbons. Langmuir, 9(11), 2758–2760. https://doi.org/10.1021/la00035a002Chen, H., Guo, Y., Wang, F., Wang, G., Qi, P., Guo, X., … Yu, F. (2017). An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Materials, 32(6), 592–599. https://doi.org/https://doi.org/10.1016/S1872-5805(17)60140-9Choi, W.-S., Shim, W.-G., Ryu, D.-W., Hwang, M.-J., & Moon, H. (2012). Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous and Mesoporous Materials, 155(Supplement C), 274–280. https://doi.org/https://doi.org/10.1016/j.micromeso.2012.01.006Compendium, M., & Ii, V. (2006). Ta Instruments. Chemical , 84(42), ibc. https://doi.org/10.1021/cen-v084n042.ibcConte, M. (2010). Supercapacitors Technical Requirements for New Applications. Fuel Cells, 10(5), 806–818. https://doi.org/10.1002/fuce.201000087Curia, M. V. (2010). Técnicas de caracterización, conceptos generales. Estudio Fisicoquímico y Catalítico Del Sistema Mn-O-V, 209. Retrieved from http://sedici.unlp.edu.ar/handle/10915/2681Du, S., Wang, L., Fu, X., Chen, M., & Wang, C. (2013). Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Bioresource Technology, 139(Supplement C), 406–409. https://doi.org/https://doi.org/10.1016/j.biortech.2013.04.085Elmouwahidi, A., Bailón-García, E., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2017). Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochimica Acta, 229, 219–228. https://doi.org/https://doi.org/10.1016/j.electacta.2017.01.152Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185–190. https://doi.org/10.1016/j.biortech.2012.02.010Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., … Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261. https://doi.org/10.1016/j.biortech.2013.01.044Frackowiak, E. (2007). Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 9(15), 1774–1785. https://doi.org/10.1039/b618139mFrackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39(6), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4Gao, S., Chen, Y., Fan, H., Wei, X., Hu, C., Luo, H., & Qu, L. (2014). Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. Journal of Materials Chemistry A, 2(10), 3317. https://doi.org/10.1039/c3ta14281gGao, X., Xing, W., Zhou, J., Wang, G., Zhuo, S., Liu, Z., … Yan, Z. (2014). Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochimica Acta, 133, 459–466. https://doi.org/10.1016/j.electacta.2014.04.101Garc, R. M., Tutora, V., & Oc, P. (2015). Diseño y caracterización de supercondensadores de alta energía basados en materiales carbonosos. https://doi.org/10.1186/1477-7819-3-17Garc, R. M., Tutora, V., & Oc, P. (2015). Diseño y caracterización de supercondensadores de alta energía basados en materiales carbonosos. https://doi.org/10.1186/1477-7819-3-17Hernández, M., Otero, A., Falcón, J., & Yperman III, Y. (2017). Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO 3 Physiochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO 3, 29(1), 26–38.Hernández, M., Otero, A., Falcón, J., & Yperman III, Y. (2017). Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO 3 Physiochemical Characteristic of Activated Carbon of Coconut Shell Modified with HNO 3, 29(1), 26–38.Inal, I. I. G., Holmes, S. M., Banford, A., & Aktas, Z. (2015). The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Science, 357, 696–703. https://doi.org/https://doi.org/10.1016/j.apsusc.2015.09.067Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-A review. Renewable and Sustainable Energy Reviews, 11(9), 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., & Yi, B. (2013). High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon, 56, 146–154. https://doi.org/10.1016/j.carbon.2012.12.085Karnan, M., Subramani, K., Srividhya, P. K., & Sathish, M. (2017). Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochimica Acta, 228, 586–596. https://doi.org/10.1016/j.electacta.2017.01.095Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook of Clean Energy Systems, 1–25. https://doi.org/10.1002/9781118991978.hces112Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook of Clean Energy Systems, 1–25. https://doi.org/10.1002/9781118991978.hces112Le Van, K., & Luong Thi, T. T. (2014b). Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24(3), 191–198. https://doi.org/10.1016/j.pnsc.2014.05.012Lee, S. G., Park, K. H., Shim, W. G., balathanigaimani, M. S., & Moon, H. (2011). Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. Journal of Industrial and Engineering Chemistry, 17(3), 450–454. https://doi.org/10.1016/j.jiec.2010.10.025Lee, S. G., Park, K. H., Shim, W. G., Balathanigaimani, M. S., & Moon, H. (2011). Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. Journal of Industrial and Engineering Chemistry, 17(3), 450–454. https://doi.org/10.1016/j.jiec.2010.10.025Li, X., Han, C., Chen, X., & Shi, C. (2010). Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous and Mesoporous Materials, 131(1–3), 303–309. https://doi.org/10.1016/j.micromeso.2010.01.007Li, X., & Wei, B. (2013). Supercapacitors based on nanostructured carbon. Nano Energy, 2(2), 159–173. https://doi.org/https://doi.org/10.1016/j.nanoen.2012.09.008Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., & Lu, G.-Q. (2011). Preparation of capacitor’s electrode from sunflower seed shell. Bioresource Technology, 102(2), 1118–1123. https://doi.org/https://doi.org/10.1016/j.biortech.2010.08.110Liew, R. K., Azwar, E., Yek, P. N. Y., Lim, X. Y., Cheng, C. K., Ng, J. H., … Lam, S. S. (2018). Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource Technology, 266, 1–10. https://doi.org/10.1016/j.biortech.2018.06.051Lin, G., Ma, R., Zhou, Y., Liu, Q., Dong, X., & Wang, J. (2018). KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochimica Acta, 261, 49–57. https://doi.org/https://doi.org/10.1016/j.electacta.2017.12.107Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H., & Wang, Y. (2016). A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 112, 1190–1198. https://doi.org/10.1016/j.jclepro.2015.07.005Liu, L., Niu, Z., & Chen, J. (2018). Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2018.01.013Lobato, B., Vretenár, V., Kotrusz, P., Hulman, M., & Centeno, T. A. (2015). Reduced graphite oxide in supercapacitor electrodes. Journal of Colloid and Interface Science, 446, 203–207. https://doi.org/https://doi.org/10.1016/j.jcis.2015.01.037López-Suárez, F. E., Bueno-López, A., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2014). Pt–Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: Effect of the precursor addition order. Journal of Power Sources, 268, 225–232. https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.06.042Lua, A. C., & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid and Interface Science, 274(2), 594–601. https://doi.org/10.1016/j.jcis.2003.10.001Luna, D., González, a, Gordón, M., & Martín, N. (2007). Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64, 39–48. https://doi.org/000700407Martínez, M. (2012). Preparación y caracterización de carbón activado a partir de lignita para su aplicación en procesos de descontaminación de aguas., 1–280.Ministerio de Agricultura y Desarrollo Rural. (2008). Plan de Desarrollo Cacaotero 2012-2021. Conecta Rural, 30.Mojica, L., Ramirez, W., Rincón, N., Blanco, D., Giraldo, L., & Moreno, J. (2012). Síntesis de carbón activado proveniente de semillas de Eucalipto por activación física y química. Afinidad LXIX, 69(559), 203–210.Montenegro Orozco, K. T., Rojas Carpio, A. S., Cabeza Rojas, I., & Hernández Pardo, M. A. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. Ion, 29(2), 23–36. https://doi.org/http://dx.doi.org/10.18273/revion.v29n2-2016002Mozammel, H. M., Masahiro, O., & SC, B. (2002). Activated charcoal from coconut shell using ZnCl2 activation. Biomass and Bioenergy, 22(5), 397–400. https://doi.org/https://doi.org/10.1016/S0961-9534(02)00015-6Olivares-Marín, M., Fernández, J. A., Lázaro, M. J., Fernández-González, C., Macías-García, A., Gómez-Serrano, V., … Centeno, T. A. (2009). Cherry stones as precursor of activated carbons for supercapacitors. Materials Chemistry and Physics, 114(1), 323–327. https://doi.org/10.1016/j.matchemphys.2008.09.010Olivares, M., Fernández, C., Macías, A., & Gómez, V. (2006). Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Applied Surface Science, 252(17), 5980–5983.Omri, A., & Benzina, M. (2012). Characterization of Activated Carbon Prepared from a New Raw Lignocellulosic Material : Ziziphus Spina-Christi Seeds. Journal de La Société Chimique de Tunisie, 14, 175–183.Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27.Peng, C., Yan, X. Bin, Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401–408. https://doi.org/10.1016/j.electacta.2012.09.082Prías Barragán, J. J., Echeverry Montoya, N. A., & Ariza Calderón, H. (2015). Fabricación y caracterización de carbón activado y de nanoplaquetas de carbón a partir de Guadua angustifolia Kunth para aplicaciones en electrónica. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(153), 444–449. https://doi.org/10.18257/raccefyn.139Rico-Pérez, V., & Bueno-López, A. (2014). Effect of RhOx/CeO2 Calcination on Metal-Support Interaction and Catalytic Activity for N2O Decomposition. Applied Sciences, 4(3), 468–481. https://doi.org/10.3390/app4030468Rodríguez, P., Giraldo, L., & Moreno, J. C. (2010). INFLUENCIA DEL pH SOBRE LA ADSORCIÓN EN CARBÓN ACTIVADO DE Cd(II) Y Ni(II) DESDE SOLUCIONES ACUOSAS. Revista Colombiana de Química; Vol. 39, Núm. 3 (2010).Rouquerol, F., Rouquerol, J., Sing, K. S. ., Llewellyn, P., & Maurin, G. (2014). ADSORPTION by Power and Porous Solids Principles, Methodology and Applications. (Elsevier, Ed.) (second). London, New York, Paris, Tokyo.Sevilla, M., & Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 7(4), 1250–1280. https://doi.org/10.1039/C3EE43525CSkoog Douglas A.,Holler James H., N. T. A. (2007). Principios de Ánalisis Instrumental. 6 Edicción.Tatiana, K., Orozco, M., Sofía, A., Carpio, R., Rojas, I. C., & Andrés, M. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca Biogas potential of agro-industrial residues generated in the department of Cundinamarca Potencial do biogás dos residuos agro-industriais gerados no departa, 29(2), 23–36.Teo, E. Y. L., Muniandy, L., Ng, E.-P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110–119. https://doi.org/https://doi.org/10.1016/j.electacta.2016.01.140Tooming, T., Thomberg, T., Kurig, H., Jänes, A., & Lust, E. (2015). High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Power Sources, 280, 667–677. https://doi.org/10.1016/j.jpowsour.2015.01.157Valle, U., Nelson, G., Wandy, M., Lizeth, C., Diego, A., Juan, C., … Diego, A. (2014). chemical activation with H 3 PO 4 . Characterization and evaluation of.Valle, U., Nelson, G., Wandy, M., Lizeth, C., Diego, A., Juan, C., … Diego, A. (2014). chemical activation with H 3 PO 4 . Characterization and evaluation of.Viades, J. (2013). FENÓMENOS DE SUPERFICIE. ADSORCIÓN, (514), 1–17.Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 41(2), 797–828. https://doi.org/10.1039/C1CS15060JWang, J., & Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45), 23710. https://doi.org/10.1039/c2jm34066fWang, K., Zhao, N., Lei, S., Yan, R., Tian, X., Wang, J., … Liu, L. (2015). Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta, 166, 1–11. https://doi.org/10.1016/j.electacta.2015.03.048Elie Paillard. (2009). Carbon: Electrochemical and physicochemical properties. New York: K Kinoshita, Carbon.Wu, F.-C., Tseng, R.-L., Hu, C.-C., & Wang, C.-C. (2005). Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources, 144(1), 302–309. https://doi.org/https://doi.org/10.1016/j.jpowsour.2004.12.020Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015a). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015b). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051Yin, L., Chen, Y., Li, D., Zhao, X., Hou, B., & Cao, B. (2016). 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Materials and Design, 111, 44–50. https://doi.org/10.1016/j.matdes.2016.08.070Zainal, N. H., Aziz, A. A., Idris, J., Jalani, N. F., Mamat, R., Ibrahim, M. F., … Abd-Aziz, S. (2018). Reduction of POME final discharge residual using activated bioadsorbent from oil palm kernel shell. Journal of Cleaner Production, 182, 830–837. https://doi.org/10.1016/j.jclepro.2018.02.110Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., … Gupta, R. K. (2017). High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach. Scientific Reports, Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., … Gupta, R. K. (2017). High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach. Scientific Reports,Zhang, L. L., Lei, Z., Zhang, J., Tian, X., & Zhao, X. S. (2011). Supercapacitors: Electrode Materials Aspects. Encyclopedia of Inorganic Chemistry. https://doi.org/10.1002/0470862106.ia816Zhang, L. L., Lei, Z., Zhang, J., Tian, X., & Zhao, X. S. (2011). Supercapacitors: Electrode Materials Aspects. Encyclopedia of Inorganic Chemistry. https://doi.org/10.1002/0470862106.ia816Zhao, Y., Ran, W., He, J., Song, Y., Zhang, C., Xiong, D. B., … Xia, Y. (2015). Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Applied Materials and Interfaces, 7(2), 1132–1139. https://doi.org/10.1021/am506815fZhu, J., Xu, Y., Wang, J., Lin, J., Sun, X., & Mao, S. (2015). The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Physical Chemistry Chemical Physics, 17(43), 28666–28673. https://doi.org/10.1039/c5cp04080aZhu, M., Weber, C. J., Yang, Y., Konuma, M., Starke, U., Kern, K., & Bittner, A. M. (2008). Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon, 46(14), 1829–1840. https://doi.org/10.1016/j.carbon.2008.07.025ORIGINALDocumento reservado temporalmente por solicitud del autor.pdfDocumento reservado temporalmente por solicitud del autor.pdfapplication/pdf91447https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/1/Documento%20reservado%20temporalmente%20por%20solicitud%20del%20autor.pdfe2ad910b43a3ea8b63bd41e4ff89a557MD51open accessTrabajo de Grado Cacao.pdfTrabajo de Grado Cacao.pdfDocumento reservadoapplication/pdf1164591https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/3/Trabajo%20de%20Grado%20Cacao.pdf4c621c08181ee36f6f413a518ce762e3MD53embargoed access|||2218-05-17LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessAutorización de Publicación de Forma Confidencial.pdfAutorización de Publicación de Forma Confidencial.pdfapplication/pdf110294https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/4/Autorizaci%c3%b3n%20de%20Publicaci%c3%b3n%20de%20Forma%20Confidencial.pdfad97778719b3e2c25d31ef0d9f8619f6MD54open accessTHUMBNAILDocumento reservado temporalmente por solicitud del autor.pdf.jpgDocumento reservado temporalmente por solicitud del autor.pdf.jpgIM Thumbnailimage/jpeg7815https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/5/Documento%20reservado%20temporalmente%20por%20solicitud%20del%20autor.pdf.jpge5b266bbb5ce23d8d87d1a4e5a49f712MD55open accessTrabajo de Grado Cacao.pdf.jpgTrabajo de Grado Cacao.pdf.jpgIM Thumbnailimage/jpeg5484https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/5519/6/Trabajo%20de%20Grado%20Cacao.pdf.jpg6688540481316f2cd8c0eb5699fa0d91MD56open access20.500.12010/5519oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/55192019-01-28 13:26:24.769open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |