Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR

SARS-CoV-2 diagnostic kits are already available from many companies and national health agencies. However, publicly available information on these diagnostic kits is lacking. In response to the growing need and the lack of information, we developed and made available a low-cost, easy-access, real-t...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12899
Acceso en línea:
https://www.nature.com/articles/s12276-020-0452-7
http://hdl.handle.net/20.500.12010/12899
https://doi.org/10.1038/s12276-020-0452-7
Palabra clave:
detection protocols for SARS-CoV-2
PCR
coronavirus disease
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Acceso restringido
Description
Summary:SARS-CoV-2 diagnostic kits are already available from many companies and national health agencies. However, publicly available information on these diagnostic kits is lacking. In response to the growing need and the lack of information, we developed and made available a low-cost, easy-access, real-time PCR-based protocol for the early detection of the virus in a previous study. During the development of the detection protocol, we found that unoptimized primer sets could inadvertently show false-positive results, raising the possibility that commercially available diagnostic kits might also contain primer sets that produce false-positive results. Here, we provide three-step guidelines for the design and optimization of specific primer sets. The three steps include (1) the selection of primer sets for target genes (RdRP, N, E, and S) in the genome of interest (SARS-CoV-2), (2) the in silico validation of primer and amplicon sequences, and (3) the optimization of PCR conditions (i.e., primer concentrations and annealing temperatures) for specific hybridization between the primers and target genes, and the elimination of spurious primer dimers. Furthermore, we have expanded the previously developed real-time PCR-based protocol to more conventional PCR-based protocols and applied a multiplex PCR-based protocol that allows the simultaneous testing of primer sets for RdRP, N, E, and S all in one reaction. Our newly optimized protocol should be helpful for the large-scale, high-fidelity screening of asymptomatic people, even without any high-specification equipment, for the further prevention of transmission, and to achieve early intervention and treatment for the rapidly propagating virus.