Mathematics for Healthcare as Part of Computational Medicine

Mathematical approaches and tools have long been used in medicine and biology; however, their application on day-to-day clinical practice has yet, to become a reality. Nevertheless, we are witnessing the dawn of a new era in which their application is increasing at dramatic speed thanks to novel mod...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2018
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14363
Acceso en línea:
https://www.frontiersin.org/research-topics/4555/mathematics-for-healthcare-as-part-of-computational-medicine
http://hdl.handle.net/20.500.12010/14363
Palabra clave:
Medicina de precisión
Modelado matemático -- Simulación por ordenador
Similitud del paciente
Medicina computacional
Digital health
Patient specific modeling
Clinical decision support
Rights
License
Abierto (Texto Completo)
id UTADEO2_9d2c2bd7c6f68625a10b5023d1e6f519
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14363
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Mathematics for Healthcare as Part of Computational Medicine
title Mathematics for Healthcare as Part of Computational Medicine
spellingShingle Mathematics for Healthcare as Part of Computational Medicine
Medicina de precisión
Modelado matemático -- Simulación por ordenador
Similitud del paciente
Medicina computacional
Digital health
Patient specific modeling
Clinical decision support
title_short Mathematics for Healthcare as Part of Computational Medicine
title_full Mathematics for Healthcare as Part of Computational Medicine
title_fullStr Mathematics for Healthcare as Part of Computational Medicine
title_full_unstemmed Mathematics for Healthcare as Part of Computational Medicine
title_sort Mathematics for Healthcare as Part of Computational Medicine
dc.subject.spa.fl_str_mv Medicina de precisión
topic Medicina de precisión
Modelado matemático -- Simulación por ordenador
Similitud del paciente
Medicina computacional
Digital health
Patient specific modeling
Clinical decision support
dc.subject.lemb.spa.fl_str_mv Modelado matemático -- Simulación por ordenador
Similitud del paciente
Medicina computacional
dc.subject.keyword.spa.fl_str_mv Digital health
Patient specific modeling
Clinical decision support
description Mathematical approaches and tools have long been used in medicine and biology; however, their application on day-to-day clinical practice has yet, to become a reality. Nevertheless, we are witnessing the dawn of a new era in which their application is increasing at dramatic speed thanks to novel modelling developments, better software, significant increase in computer power, a change in culture in which ‘multidisciplinary’ is seen as a must as well as the emergence of the new paradigm of ‘personalised medicine’, tailored to individual patients. Evidence-based medicine will be replaced eventually by explanation-based (or explanatory) medicine and this change must come sooner, rather than later. Mathematical approaches are poised to become a critical component in the prognosis, diagnosis and treatment of human diseases as well as in the management of long-term chronic conditions in the near future. We are currently facing the age of ‘Big Data’ and the amount of information that is being generated in all aspects of modern life, including healthcare, has increased exponentially, becoming a challenge in itself due to the lack of tools and expertise to analyse heterogeneous datasets. Moreover, in this ‘Big Data’ era, there are specific challenges linked to healthcare data due to data protection, a fragmented data collection system and ethical constraints, which makes ‘Big Data’ in healthcare extremely challenging. Effective approaches to mathematical modelling in healthcare often require the seamless integration of data from a myriad of sources (e.g. patient records, imaging and/or sensor data, genomics/proteomics/metabolomics data, social media information, nutrition etc.). The development of new and improved approaches to modelling systems that span multiple temporal and/or spatial scales (e.g. genes → cells → tissues → organs → whole body or individual → population) in combination with the ever growing clinical data is a crucial step towards overcoming the above mentioned challenges. Recent advances in mathematical sciences have shown that robust and precise mathematical models of complex processes/networks, which are ubiquitous in healthcare and medicine, are critical to understanding many aspects of human biology and disease, just to name a few, tumour development and treatment response mechanisms, the interplay of haemodynamics and cellular or sub-cellular mechanism in the development of atherosclerosis, the human brain and its interplay with the cardiovascular system or infectious disease propagation. In addition, the understanding of complex processes and networks is important in optimising the provision of healthcare. This area includes the development of mathematical and statistical tools able to facilitate improvements in the design of clinical trials and the use of the resulting data. Last but not least, the language used by clinicians and healthcare practitioners on one hand and the mathematical modelers on the other is vastly different. Therefore, substantial efforts are needed in order to initiate a dialogue between both. In effect, mathematical approaches are useful tools that still remain incomprehensible for most of the clinicians and medical scientists and hence their potential is poorly exploited in the healthcare domain.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-07-24
dc.date.accessioned.none.fl_str_mv 2020-10-11T04:04:38Z
dc.date.available.none.fl_str_mv 2020-10-11T04:04:38Z
dc.type.local.spa.fl_str_mv Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-2-889-45577-5
dc.identifier.issn.none.fl_str_mv 1664-8714
dc.identifier.other.none.fl_str_mv https://www.frontiersin.org/research-topics/4555/mathematics-for-healthcare-as-part-of-computational-medicine
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/14363
dc.identifier.doi.none.fl_str_mv 10.3389/978-2-88945-577-5
identifier_str_mv 978-2-889-45577-5
1664-8714
10.3389/978-2-88945-577-5
url https://www.frontiersin.org/research-topics/4555/mathematics-for-healthcare-as-part-of-computational-medicine
http://hdl.handle.net/20.500.12010/14363
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Tsaneva-Atanasova, K., Diaz-Zuccarini, V., eds (2018). Mathematics for Healthcare. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-577-5
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 284 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media SA
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/1/MATHEMATICS%20FOR%20HEALTHCARE_49.PDF
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/3/MATHEMATICS%20FOR%20HEALTHCARE_49.PDF.jpg
bitstream.checksum.fl_str_mv 6b5b80b8560b6fd2d26c7b6ff3f226ce
abceeb1c943c50d3343516f9dbfc110f
9d0b6a3d0436df6cf20480eb55fcd581
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213566611324928
spelling 2020-10-11T04:04:38Z2020-10-11T04:04:38Z2018-07-24978-2-889-45577-51664-8714https://www.frontiersin.org/research-topics/4555/mathematics-for-healthcare-as-part-of-computational-medicinehttp://hdl.handle.net/20.500.12010/1436310.3389/978-2-88945-577-5284 páginasapplication/pdfengFrontiers Media SAMedicina de precisiónModelado matemático -- Simulación por ordenadorSimilitud del pacienteMedicina computacionalDigital healthPatient specific modelingClinical decision supportMathematics for Healthcare as Part of Computational MedicineLibrohttp://purl.org/coar/resource_type/c_2f33Abierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Tsaneva-Atanasova, K., Diaz-Zuccarini, V., eds (2018). Mathematics for Healthcare. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-577-5Mathematical approaches and tools have long been used in medicine and biology; however, their application on day-to-day clinical practice has yet, to become a reality. Nevertheless, we are witnessing the dawn of a new era in which their application is increasing at dramatic speed thanks to novel modelling developments, better software, significant increase in computer power, a change in culture in which ‘multidisciplinary’ is seen as a must as well as the emergence of the new paradigm of ‘personalised medicine’, tailored to individual patients. Evidence-based medicine will be replaced eventually by explanation-based (or explanatory) medicine and this change must come sooner, rather than later. Mathematical approaches are poised to become a critical component in the prognosis, diagnosis and treatment of human diseases as well as in the management of long-term chronic conditions in the near future. We are currently facing the age of ‘Big Data’ and the amount of information that is being generated in all aspects of modern life, including healthcare, has increased exponentially, becoming a challenge in itself due to the lack of tools and expertise to analyse heterogeneous datasets. Moreover, in this ‘Big Data’ era, there are specific challenges linked to healthcare data due to data protection, a fragmented data collection system and ethical constraints, which makes ‘Big Data’ in healthcare extremely challenging. Effective approaches to mathematical modelling in healthcare often require the seamless integration of data from a myriad of sources (e.g. patient records, imaging and/or sensor data, genomics/proteomics/metabolomics data, social media information, nutrition etc.). The development of new and improved approaches to modelling systems that span multiple temporal and/or spatial scales (e.g. genes → cells → tissues → organs → whole body or individual → population) in combination with the ever growing clinical data is a crucial step towards overcoming the above mentioned challenges. Recent advances in mathematical sciences have shown that robust and precise mathematical models of complex processes/networks, which are ubiquitous in healthcare and medicine, are critical to understanding many aspects of human biology and disease, just to name a few, tumour development and treatment response mechanisms, the interplay of haemodynamics and cellular or sub-cellular mechanism in the development of atherosclerosis, the human brain and its interplay with the cardiovascular system or infectious disease propagation. In addition, the understanding of complex processes and networks is important in optimising the provision of healthcare. This area includes the development of mathematical and statistical tools able to facilitate improvements in the design of clinical trials and the use of the resulting data. Last but not least, the language used by clinicians and healthcare practitioners on one hand and the mathematical modelers on the other is vastly different. Therefore, substantial efforts are needed in order to initiate a dialogue between both. In effect, mathematical approaches are useful tools that still remain incomprehensible for most of the clinicians and medical scientists and hence their potential is poorly exploited in the healthcare domain.Tsaneva Atanasova, KrasimiraDiaz Zuccarini, VanessaORIGINALMATHEMATICS FOR HEALTHCARE_49.PDFMATHEMATICS FOR HEALTHCARE_49.PDFVer documentoapplication/pdf49858709https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/1/MATHEMATICS%20FOR%20HEALTHCARE_49.PDF6b5b80b8560b6fd2d26c7b6ff3f226ceMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILMATHEMATICS FOR HEALTHCARE_49.PDF.jpgMATHEMATICS FOR HEALTHCARE_49.PDF.jpgIM Thumbnailimage/jpeg19044https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14363/3/MATHEMATICS%20FOR%20HEALTHCARE_49.PDF.jpg9d0b6a3d0436df6cf20480eb55fcd581MD53open access20.500.12010/14363oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/143632021-01-25 16:48:41.091open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==