Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps

High-resolution maps of soil property are considered as the most important inputs for decision support and policy-making in agriculture, forestry, flood control, and environmental protection. Commonly, soil properties are mainly obtained from field surveys. Field soil surveys are generally time-cons...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2021
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16833
Acceso en línea:
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/using-artificial-neural-networks-to-produce-high-resolution-soil-property-maps
http://hdl.handle.net/20.500.12010/16833
Palabra clave:
Biología
Carbono orgánico del suelo
Textura de la tierra
Drenaje del suelo
Rights
License
Abierto (Texto Completo)
id UTADEO2_92e7a768f08788013639761e6f057c7b
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16833
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
title Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
spellingShingle Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
Biología
Carbono orgánico del suelo
Textura de la tierra
Drenaje del suelo
title_short Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
title_full Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
title_fullStr Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
title_full_unstemmed Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
title_sort Using Artificial Neural Networks to Produce High- Resolution Soil Property Maps
dc.subject.spa.fl_str_mv Biología
topic Biología
Carbono orgánico del suelo
Textura de la tierra
Drenaje del suelo
dc.subject.lemb.spa.fl_str_mv Carbono orgánico del suelo
Textura de la tierra
Drenaje del suelo
description High-resolution maps of soil property are considered as the most important inputs for decision support and policy-making in agriculture, forestry, flood control, and environmental protection. Commonly, soil properties are mainly obtained from field surveys. Field soil surveys are generally time-consuming and expensive, with a limitation of application throughout a large area. As such, high-resolution soil property maps are only available for small areas, very often, being obtained for research purposes. In the chapter, artificial neural network (ANN) models were introduced to produce high-resolution maps of soil property. It was found that ANNs can be used to predict high-resolution soil texture, soil drainage classes, and soil organic content across landscape with reasonable accuracy and low cost. Expanding applications of the ANNs were also presented.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-21T18:03:41Z
dc.date.available.none.fl_str_mv 2021-01-21T18:03:41Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.other.none.fl_str_mv https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/using-artificial-neural-networks-to-produce-high-resolution-soil-property-maps
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/16833
dc.identifier.doi.none.fl_str_mv 10.5772/intechopen.70705
url https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/using-artificial-neural-networks-to-produce-high-resolution-soil-property-maps
http://hdl.handle.net/20.500.12010/16833
identifier_str_mv 10.5772/intechopen.70705
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Zhengyong Zhao, Fan-Rui Meng, Qi Yang and Hangyong Zhu (December 20th 2017). Using Artificial Neural Networks to Produce High-Resolution Soil Property Maps, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70705.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 27 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IntechOpen
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/1/Using%20Artificial%20Neural%20Networks%20to%20Produce%20High_84.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/3/Using%20Artificial%20Neural%20Networks%20to%20Produce%20High_84.pdf.jpg
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/2/license.txt
bitstream.checksum.fl_str_mv b939ba1012410d314c4bb6ddd099917c
f94e49470bc040d7eddeeca6b23f4786
abceeb1c943c50d3343516f9dbfc110f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213511912357888
spelling 2021-01-21T18:03:41Z2021-01-21T18:03:41Zhttps://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/using-artificial-neural-networks-to-produce-high-resolution-soil-property-mapshttp://hdl.handle.net/20.500.12010/1683310.5772/intechopen.7070527 páginasapplication/pdfengIntechOpenBiologíaCarbono orgánico del sueloTextura de la tierraDrenaje del sueloUsing Artificial Neural Networks to Produce High- Resolution Soil Property MapsAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Zhengyong Zhao, Fan-Rui Meng, Qi Yang and Hangyong Zhu (December 20th 2017). Using Artificial Neural Networks to Produce High-Resolution Soil Property Maps, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70705.High-resolution maps of soil property are considered as the most important inputs for decision support and policy-making in agriculture, forestry, flood control, and environmental protection. Commonly, soil properties are mainly obtained from field surveys. Field soil surveys are generally time-consuming and expensive, with a limitation of application throughout a large area. As such, high-resolution soil property maps are only available for small areas, very often, being obtained for research purposes. In the chapter, artificial neural network (ANN) models were introduced to produce high-resolution maps of soil property. It was found that ANNs can be used to predict high-resolution soil texture, soil drainage classes, and soil organic content across landscape with reasonable accuracy and low cost. Expanding applications of the ANNs were also presented.http://purl.org/coar/resource_type/c_2f33Zhao, ZhengyongMeng, Fan RuiYang, Qi.Zhu, HangyongORIGINALUsing Artificial Neural Networks to Produce High_84.pdfUsing Artificial Neural Networks to Produce High_84.pdfVer documentoapplication/pdf5122110https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/1/Using%20Artificial%20Neural%20Networks%20to%20Produce%20High_84.pdfb939ba1012410d314c4bb6ddd099917cMD51open accessTHUMBNAILUsing Artificial Neural Networks to Produce High_84.pdf.jpgUsing Artificial Neural Networks to Produce High_84.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/3/Using%20Artificial%20Neural%20Networks%20to%20Produce%20High_84.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16833/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open access20.500.12010/16833oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168332021-01-31 18:06:34.676open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==