Synthetic Biology: Engineering complexity and refactoring cell capabilities

One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibi...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2015
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14287
Acceso en línea:
https://www.frontiersin.org/research-topics/2866/synthetic-biology-engineering-complexity-and-refactoring-cell-capabilities
http://hdl.handle.net/20.500.12010/14287
Palabra clave:
Biotechnology
General and civil engineering
Metabolism refactoring
Synthetic biology
Metabolic pathway regulation
Synthetic expression circuit
Complexity
Engineering biology
Rights
License
Abierto (Texto Completo)
id UTADEO2_8bebf3f80e95d2454763357dd50fa9ff
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14287
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Synthetic Biology: Engineering complexity and refactoring cell capabilities
title Synthetic Biology: Engineering complexity and refactoring cell capabilities
spellingShingle Synthetic Biology: Engineering complexity and refactoring cell capabilities
Biotechnology
General and civil engineering
Metabolism refactoring
Synthetic biology
Metabolic pathway regulation
Synthetic expression circuit
Complexity
Engineering biology
title_short Synthetic Biology: Engineering complexity and refactoring cell capabilities
title_full Synthetic Biology: Engineering complexity and refactoring cell capabilities
title_fullStr Synthetic Biology: Engineering complexity and refactoring cell capabilities
title_full_unstemmed Synthetic Biology: Engineering complexity and refactoring cell capabilities
title_sort Synthetic Biology: Engineering complexity and refactoring cell capabilities
dc.subject.spa.fl_str_mv Biotechnology
General and civil engineering
Metabolism refactoring
topic Biotechnology
General and civil engineering
Metabolism refactoring
Synthetic biology
Metabolic pathway regulation
Synthetic expression circuit
Complexity
Engineering biology
dc.subject.lemb.spa.fl_str_mv Synthetic biology
Metabolic pathway regulation
Synthetic expression circuit
dc.subject.keyword.spa.fl_str_mv Complexity
Engineering biology
description One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.
publishDate 2015
dc.date.created.none.fl_str_mv 2015-10-30
dc.date.accessioned.none.fl_str_mv 2020-10-06T22:38:00Z
dc.date.available.none.fl_str_mv 2020-10-06T22:38:00Z
dc.type.local.spa.fl_str_mv Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-28-89196-85-2
dc.identifier.issn.none.fl_str_mv 1664-8714
dc.identifier.other.none.fl_str_mv https://www.frontiersin.org/research-topics/2866/synthetic-biology-engineering-complexity-and-refactoring-cell-capabilities
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/14287
dc.identifier.doi.none.fl_str_mv 10.3389/978-2-88919-685-2
identifier_str_mv 978-28-89196-85-2
1664-8714
10.3389/978-2-88919-685-2
url https://www.frontiersin.org/research-topics/2866/synthetic-biology-engineering-complexity-and-refactoring-cell-capabilities
http://hdl.handle.net/20.500.12010/14287
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Ceroni, F., Haynes, K. A., Carbonell P. and François, J-M., eds. (2015). Synthetic biology: engineering complexity and refactoring cell capabilities. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-685-2
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 125 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media SA
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/1/Synthetic%20Biology%20engineering%20complexity%20and%20refactoring%20cell%20capabilities.PDF
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/3/Synthetic%20Biology%20engineering%20complexity%20and%20refactoring%20cell%20capabilities.PDF.jpg
bitstream.checksum.fl_str_mv 9c20b12c374d2b4dd55b3ae2fb059af2
abceeb1c943c50d3343516f9dbfc110f
bc125061e8943017c9f7714c86d6caf4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213574935969792
spelling 2020-10-06T22:38:00Z2020-10-06T22:38:00Z2015-10-30978-28-89196-85-21664-8714https://www.frontiersin.org/research-topics/2866/synthetic-biology-engineering-complexity-and-refactoring-cell-capabilitieshttp://hdl.handle.net/20.500.12010/1428710.3389/978-2-88919-685-2125 páginasapplication/pdfengFrontiers Media SABiotechnologyGeneral and civil engineeringMetabolism refactoringSynthetic biologyMetabolic pathway regulationSynthetic expression circuitComplexityEngineering biologySynthetic Biology: Engineering complexity and refactoring cell capabilitiesLibrohttp://purl.org/coar/resource_type/c_2f33Abierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Ceroni, F., Haynes, K. A., Carbonell P. and François, J-M., eds. (2015). Synthetic biology: engineering complexity and refactoring cell capabilities. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-685-2One of the key features of biological systems is complexity, where the behavior of high level structures is more than the sum of the direct interactions between single components. Synthetic Biologists aim to use rational design to build new systems that do not already exist in nature and that exhibit useful biological functions with different levels of complexity. One such case is metabolic engineering, where, with the advent of genetic and protein engineering, by supplying cells with chemically synthesized non-natural amino acids and sugars as new building blocks, it is now becoming feasible to introduce novel physical and chemical functions and properties into biological entities. The rules of how complex behaviors arise, however, are not yet well understood. For instance, instead of considering cells as inert chassis in which synthetic devices could be easily operated to impart new functions, the presence of these systems may impact cell physiology with reported effects on transcription, translation, metabolic fitness and optimal resource allocation. The result of these changes in the chassis may be failure of the synthetic device, unexpected or reduced device behavior, or perhaps a more permissive environment in which the synthetic device is allowed to function. While new efforts have already been made to increase standardization and characterization of biological components in order to have well known parts as building blocks for the construction of more complex devices, also new strategies are emerging to better understand the biological dynamics underlying the phenomena we observe. For example, it has been shown that the features of single biological components [i.e. promoter strength, ribosome binding affinity, etc] change depending on the context where the sequences are allocated. Thus, new technical approaches have been adopted to preserve single components activity, as genomic insulation or the utilization of prediction algorithms able to take biological context into account. There have been noteworthy advances for synthetic biology in clinical technologies, biofuel production, and pharmaceuticals production; also, metabolic engineering combined with microbial selection/adaptation and fermentation processes allowed to make remarkable progress towards bio-products formation such as bioethanol, succinate, malate and, more interestingly, heterologous products or even non-natural metabolites. However, despite the many progresses, it is still clear that ad hoc trial and error predominates over purely bottom-up, rational design approaches in the synthetic biology community. In this scenario, modelling approaches are often used as a descriptive tool rather than for the prediction of complex behaviors. The initial confidence on a pure reductionist approach to the biological world has left space to a new and deeper investigation of the complexity of biological processes to gain new insights and broaden the categories of synthetic biology. In this Research Topic we host contributions that explore and address two areas of Synthetic Biology at the intersection between rational design and natural complexity: (1) the impact of synthetic devices on the host cell, or "chassis" and (2) the impact of context on the synthetic devices. Particular attention will be given to the application of these principles to the rewiring of cell metabolism in a bottom-up fashion to produce non-natural metabolites or chemicals that should eventually serve as a substitute for petrol-derived chemicals, and, on a long-term view, to provide economical, ecological and ethical solutions to today’s energetic and societal challenges.Ceroni, FrancescaAnn Haynes, KarmellaCarbonell, PabloMarie Fran, JeanORIGINALSynthetic Biology engineering complexity and refactoring cell capabilities.PDFSynthetic Biology engineering complexity and refactoring cell capabilities.PDFVer documentoapplication/pdf14942515https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/1/Synthetic%20Biology%20engineering%20complexity%20and%20refactoring%20cell%20capabilities.PDF9c20b12c374d2b4dd55b3ae2fb059af2MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILSynthetic Biology engineering complexity and refactoring cell capabilities.PDF.jpgSynthetic Biology engineering complexity and refactoring cell capabilities.PDF.jpgIM Thumbnailimage/jpeg24854https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14287/3/Synthetic%20Biology%20engineering%20complexity%20and%20refactoring%20cell%20capabilities.PDF.jpgbc125061e8943017c9f7714c86d6caf4MD53open access20.500.12010/14287oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/142872021-02-22 18:32:37.836open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==