Computer Vision Metrics: Survey, Taxonomy, and Analysis

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2018
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16747
Acceso en línea:
https://link.springer.com/book/10.1007/978-1-4302-5930-5
http://hdl.handle.net/20.500.12010/16747
https://doi.org/10.1007/978-1-4302-5930-5
Palabra clave:
Informática
Imágenes en 2D
Procesamiento de campos de profundidad
Historia -- Imágenes 2D y 3D
Rights
License
Abierto (Texto Completo)
Description
Summary:Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.