Feasibility of using photovoltaic solar energy for water treatment plants

El propósito de esta investigación es determinar la factibilidad de suministro de energía solar fotovoltaica para los requerimientos eléctricos de plantas de potabilización y tratamiento de aguas residuales, en seis regiones de Colombia, con diferentes condiciones geográficas y climatológicas: Regió...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
spa
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/32241
Acceso en línea:
https://ijece.iaescore.com/index.php/IJECE/article/view/23967/14830
http://hdl.handle.net/20.500.12010/32241
Palabra clave:
Agua potable
Sistemas fotovoltaicos
Energía solar
Plantas de tratamiento de agua
Energías renovables
Rights
License
Abierto (Texto Completo)
id UTADEO2_815911b099a5cfc49eca9c3e8ed4b775
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/32241
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Feasibility of using photovoltaic solar energy for water treatment plants
title Feasibility of using photovoltaic solar energy for water treatment plants
spellingShingle Feasibility of using photovoltaic solar energy for water treatment plants
Agua potable
Sistemas fotovoltaicos
Energía solar
Plantas de tratamiento de agua
Energías renovables
title_short Feasibility of using photovoltaic solar energy for water treatment plants
title_full Feasibility of using photovoltaic solar energy for water treatment plants
title_fullStr Feasibility of using photovoltaic solar energy for water treatment plants
title_full_unstemmed Feasibility of using photovoltaic solar energy for water treatment plants
title_sort Feasibility of using photovoltaic solar energy for water treatment plants
dc.subject.spa.fl_str_mv Agua potable
Sistemas fotovoltaicos
Energía solar
Plantas de tratamiento de agua
topic Agua potable
Sistemas fotovoltaicos
Energía solar
Plantas de tratamiento de agua
Energías renovables
dc.subject.lemb.spa.fl_str_mv Energías renovables
description El propósito de esta investigación es determinar la factibilidad de suministro de energía solar fotovoltaica para los requerimientos eléctricos de plantas de potabilización y tratamiento de aguas residuales, en seis regiones de Colombia, con diferentes condiciones geográficas y climatológicas: Región Andina, Región Amazónica, Región Orinoquía, Región Caribe, Región Pacífico y Región Insular. El estudio reveló que los costos de los sistemas fotovoltaicos oscilan entre USD 32.486,86 y USD 40.716,86, sin utilizar un sistema de almacenamiento con baterías, ya que el precio de éstas hace inviable la recuperación de la inversión. En lugar de utilizar baterías para almacenar energía, se utiliza un sistema de almacenamiento de agua. La carga total diaria de los sistemas de saneamiento es de 57 kWh/día, lo que evitaría 7120,44 kg de CO2 al año. Además, durante toda la vida útil del proyecto de 20 años, no se liberarían al medio ambiente 142,4 tCO2.
publishDate 2021
dc.date.created.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-10-30T21:27:32Z
dc.date.available.none.fl_str_mv 2023-10-30T21:27:32Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.other.spa.fl_str_mv https://ijece.iaescore.com/index.php/IJECE/article/view/23967/14830
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/32241
url https://ijece.iaescore.com/index.php/IJECE/article/view/23967/14830
http://hdl.handle.net/20.500.12010/32241
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv L. Qoaider and D. Steinbrecht, “Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions,” Appl. Energy, vol. 87, no. 2, pp. 427–435, 2010.
Y. Bakelli, A. Hadj Arab, and B. Azoui, “Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept,” Sol. Energy, vol. 85, no. 2, pp. 288–294, 2011.
G. D. P. da Silva and M. H. Sharqawy, “Techno-economic analysis of low impact solar brackish water desalination system in the Brazilian Semiarid region,” J. Clean. Prod., vol. 248, 2020.
S. Ould-Amrouche, D. Rekioua, and A. Hamidat, “Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential,” Appl. Energy, vol. 87, no. 11, pp. 3451–3459, 2010.
J. K. Kaldellis, E. Meidanis, and D. Zafirakis, “Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation,” Appl. Energy, vol. 88, no. 12, pp. 4556–4562, 2011.
M. Al-Hrari, İ. Ceylan, K. Nakoa, and A. Ergün, “Concentrated photovoltaic and thermal system application for fresh water production,” Appl. Therm. Eng., vol. 171, no. July 2019, 2020.
S. S. Chandel, M. Nagaraju Naik, and R. Chandel, “Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies,” Renew. Sustain. Energy Rev., vol. 49, pp. 1084–1099, 2015.
N. Pichel, M. Vivar, M. Fuentes, and K. Eugenio-Cruz, “Study of a hybrid photovoltaic-photochemical technology for meeting the needs of safe drinking water and electricity in developing countries: First field trial in rural Mexico,” J. Water Process Eng., vol. 33, Sep. 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv International Journal of Electrical and Computer Engineering
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/1/23967-47332-1-PB.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/3/23967-47332-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 2552020d52df115c91be3c4ec212bda5
baba314677a6b940f072575a13bb6906
e63ffcf887eacde54189d6fe68e8ec2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditiorepositorio@utadeo.edu.co
_version_ 1814213540344496128
spelling 2023-10-30T21:27:32Z2023-10-30T21:27:32Z2021https://ijece.iaescore.com/index.php/IJECE/article/view/23967/14830http://hdl.handle.net/20.500.12010/32241El propósito de esta investigación es determinar la factibilidad de suministro de energía solar fotovoltaica para los requerimientos eléctricos de plantas de potabilización y tratamiento de aguas residuales, en seis regiones de Colombia, con diferentes condiciones geográficas y climatológicas: Región Andina, Región Amazónica, Región Orinoquía, Región Caribe, Región Pacífico y Región Insular. El estudio reveló que los costos de los sistemas fotovoltaicos oscilan entre USD 32.486,86 y USD 40.716,86, sin utilizar un sistema de almacenamiento con baterías, ya que el precio de éstas hace inviable la recuperación de la inversión. En lugar de utilizar baterías para almacenar energía, se utiliza un sistema de almacenamiento de agua. La carga total diaria de los sistemas de saneamiento es de 57 kWh/día, lo que evitaría 7120,44 kg de CO2 al año. Además, durante toda la vida útil del proyecto de 20 años, no se liberarían al medio ambiente 142,4 tCO2.#FotovoltaicoThe purpose of this research is to determine the feasibility of supplying photovoltaic solar energy for the electrical requirements of drinking water and wastewater treatment plants, in six regions of Colombia, with different geographic and climatological conditions: Andean Region, Amazon Region, Orinoquía Region, Caribbean Region, Pacific Region, and Insular Region. The study revealed that the costs of the photovoltaic systems oscillate between USD 32,486.86 and USD 40,716.86, without using a storage system with batteries, since the price of these makes the investment recovery unfeasible. Instead of using batteries to store energy, a water storage system is used. The total daily load of the sanitation systems is 57 kWh/day, which would avoid 7120.44 kg CO2 per year. Besides, during the entire useful life of the 20-year project, 142.4 tCO2 would not be released into the environment.7 páginasapplication/pdfspaInternational Journal of Electrical and Computer EngineeringAgua potableSistemas fotovoltaicosEnergía solarPlantas de tratamiento de aguaEnergías renovablesFeasibility of using photovoltaic solar energy for water treatment plantsAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2L. Qoaider and D. Steinbrecht, “Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions,” Appl. Energy, vol. 87, no. 2, pp. 427–435, 2010.Y. Bakelli, A. Hadj Arab, and B. Azoui, “Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept,” Sol. Energy, vol. 85, no. 2, pp. 288–294, 2011.G. D. P. da Silva and M. H. Sharqawy, “Techno-economic analysis of low impact solar brackish water desalination system in the Brazilian Semiarid region,” J. Clean. Prod., vol. 248, 2020.S. Ould-Amrouche, D. Rekioua, and A. Hamidat, “Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential,” Appl. Energy, vol. 87, no. 11, pp. 3451–3459, 2010.J. K. Kaldellis, E. Meidanis, and D. Zafirakis, “Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation,” Appl. Energy, vol. 88, no. 12, pp. 4556–4562, 2011.M. Al-Hrari, İ. Ceylan, K. Nakoa, and A. Ergün, “Concentrated photovoltaic and thermal system application for fresh water production,” Appl. Therm. Eng., vol. 171, no. July 2019, 2020.S. S. Chandel, M. Nagaraju Naik, and R. Chandel, “Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies,” Renew. Sustain. Energy Rev., vol. 49, pp. 1084–1099, 2015.N. Pichel, M. Vivar, M. Fuentes, and K. Eugenio-Cruz, “Study of a hybrid photovoltaic-photochemical technology for meeting the needs of safe drinking water and electricity in developing countries: First field trial in rural Mexico,” J. Water Process Eng., vol. 33, Sep. 2020.http://purl.org/coar/resource_type/c_6501Saavedra, AlexanderGalvis, Nataly AlejandraCastaneda, MónicaZapata, SebastianMesa, FredyAristizábal, Andrés JuliánORIGINAL23967-47332-1-PB.pdf23967-47332-1-PB.pdfapplication/pdf666498https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/1/23967-47332-1-PB.pdf2552020d52df115c91be3c4ec212bda5MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAIL23967-47332-1-PB.pdf.jpg23967-47332-1-PB.pdf.jpgIM Thumbnailimage/jpeg12876https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/32241/3/23967-47332-1-PB.pdf.jpge63ffcf887eacde54189d6fe68e8ec2fMD53open access20.500.12010/32241oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/322412023-11-10 09:52:42.951open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditiorepositorio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==