Representation Learning for Natural Language Processing

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including word...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14320
Acceso en línea:
https://www.springer.com/gp/book/9789811555725#otherversion=9789811555732
http://hdl.handle.net/20.500.12010/14320
https://doi.org/10.1007/978-981-15-5573-2
Palabra clave:
Computer Science
Linguistics
Natural Language Processing (NLP)
Data Mining and knowledge discovery
Knowledge representation
Word representation
Machine learning
Expert systems -- knowledge -- based systems
Artificial intelligence
Deep learning
Natural language processing
Document representation
Natural language & machine translation
Computational linguistics
Open access
Data mining
Big Data
Rights
License
Abierto (Texto Completo)
id UTADEO2_80e81b60421188cf9744ae059a3a7741
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14320
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Representation Learning for Natural Language Processing
title Representation Learning for Natural Language Processing
spellingShingle Representation Learning for Natural Language Processing
Computer Science
Linguistics
Natural Language Processing (NLP)
Data Mining and knowledge discovery
Knowledge representation
Word representation
Machine learning
Expert systems -- knowledge -- based systems
Artificial intelligence
Deep learning
Natural language processing
Document representation
Natural language & machine translation
Computational linguistics
Open access
Data mining
Big Data
title_short Representation Learning for Natural Language Processing
title_full Representation Learning for Natural Language Processing
title_fullStr Representation Learning for Natural Language Processing
title_full_unstemmed Representation Learning for Natural Language Processing
title_sort Representation Learning for Natural Language Processing
dc.subject.spa.fl_str_mv Computer Science
Linguistics
Natural Language Processing (NLP)
Data Mining and knowledge discovery
Knowledge representation
Word representation
Machine learning
topic Computer Science
Linguistics
Natural Language Processing (NLP)
Data Mining and knowledge discovery
Knowledge representation
Word representation
Machine learning
Expert systems -- knowledge -- based systems
Artificial intelligence
Deep learning
Natural language processing
Document representation
Natural language & machine translation
Computational linguistics
Open access
Data mining
Big Data
dc.subject.lemb.spa.fl_str_mv Expert systems -- knowledge -- based systems
Artificial intelligence
Deep learning
Natural language processing
Document representation
Natural language & machine translation
dc.subject.keyword.spa.fl_str_mv Computational linguistics
Open access
Data mining
Big Data
description This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-09T01:32:36Z
dc.date.available.none.fl_str_mv 2020-10-09T01:32:36Z
dc.date.created.none.fl_str_mv 2020-07-15
dc.type.local.spa.fl_str_mv Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-981-15-5573-2
978-981-15-5572-5
dc.identifier.other.none.fl_str_mv https://www.springer.com/gp/book/9789811555725#otherversion=9789811555732
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/14320
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-981-15-5573-2
identifier_str_mv 978-981-15-5573-2
978-981-15-5572-5
url https://www.springer.com/gp/book/9789811555725#otherversion=9789811555732
http://hdl.handle.net/20.500.12010/14320
https://doi.org/10.1007/978-981-15-5573-2
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Abierto (Texto Completo)
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 349 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/1/Representation%20Learning%20For%20Natur_10.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/3/Representation%20Learning%20For%20Natur_10.pdf.jpg
bitstream.checksum.fl_str_mv ed2e626d6b970db9965197d1312ae3f4
abceeb1c943c50d3343516f9dbfc110f
fe4ef4b7c39116bc869681b5a1f1cd44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213545649242112
spelling 2020-10-09T01:32:36Z2020-10-09T01:32:36Z2020-07-15978-981-15-5573-2978-981-15-5572-5https://www.springer.com/gp/book/9789811555725#otherversion=9789811555732http://hdl.handle.net/20.500.12010/14320https://doi.org/10.1007/978-981-15-5573-2349 páginasapplication/pdfengSpringer NatureComputer ScienceLinguisticsNatural Language Processing (NLP)Data Mining and knowledge discoveryKnowledge representationWord representationMachine learningExpert systems -- knowledge -- based systemsArtificial intelligenceDeep learningNatural language processingDocument representationNatural language & machine translationComputational linguisticsOpen accessData miningBig DataRepresentation Learning for Natural Language ProcessingLibrohttp://purl.org/coar/resource_type/c_2f33Abierto (Texto Completo)http://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.Zhiyuan, LiuYankai, LinMaosong, SunORIGINALRepresentation Learning For Natur_10.pdfRepresentation Learning For Natur_10.pdfVer documentoapplication/pdf10486311https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/1/Representation%20Learning%20For%20Natur_10.pdfed2e626d6b970db9965197d1312ae3f4MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILRepresentation Learning For Natur_10.pdf.jpgRepresentation Learning For Natur_10.pdf.jpgIM Thumbnailimage/jpeg19927https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14320/3/Representation%20Learning%20For%20Natur_10.pdf.jpgfe4ef4b7c39116bc869681b5a1f1cd44MD53open access20.500.12010/14320oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/143202021-02-22 18:57:58.521open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==