Optimization Based on Pattern Search Algorithm Applied to pH Non-Linear Control
In this paper, an approach for the tuning of a model-based non-linear predictive control (NMPC) is presented. The proposed control uses the pattern search optimization algorithm (PSM), which is applied to the pH non-linear control in the alkalinization process of sugar juice. First, the model identi...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/28002
- Acceso en línea:
- https://doi.org/10.3390/pr9122283
http://hdl.handle.net/20.500.12010/28002
http://expeditiorepositorio.utadeo.edu.co
- Palabra clave:
- Algorithm
Sugar Juice
Azúcares
Azúcar
Sacáridos
- Rights
- License
- Abierto (Texto Completo)
Summary: | In this paper, an approach for the tuning of a model-based non-linear predictive control (NMPC) is presented. The proposed control uses the pattern search optimization algorithm (PSM), which is applied to the pH non-linear control in the alkalinization process of sugar juice. First, the model identification is made using the Takagi Sugeno T-S fuzzy inference systems with multidimensional fuzzy sets; the next step is the controller parameters tuning. The PSM algorithm is used in both cases. The proposed approach allows the minimization of model uncertainty and decreases, in the response, the error in a steady state when compared with other authors who perform the same procedure but apply other optimization algorithms. The results show an improvement in the steady-state error in the plant response. |
---|