Spatiotemporal transmission dynamics of the COVID-19 pandemic and its impact on critical healthcare capacity

The role of geospatial disparities in the dynamics of the COVID-19 pandemic is poorly understood. We developed a spatially-explicit mathematical model to simulate transmission dynamics of COVID-19 disease infection in relation with the uneven distribution of the healthcare capacity in Ohio, U.S. The...

Full description

Autores:
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14029
Acceso en línea:
https://doi.org/10.1016/j.healthplace.2020.102404
http://hdl.handle.net/20.500.12010/14029
Palabra clave:
COVID-19
Spatially-explicit mathematical mode
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Abierto (Texto Completo)
Description
Summary:The role of geospatial disparities in the dynamics of the COVID-19 pandemic is poorly understood. We developed a spatially-explicit mathematical model to simulate transmission dynamics of COVID-19 disease infection in relation with the uneven distribution of the healthcare capacity in Ohio, U.S. The results showed substantial spatial variation in the spread of the disease, with localized areas showing marked differences in disease attack rates. Higher COVID-19 attack rates experienced in some highly connected and urbanized areas (274 cases per 100,000 people) could substantially impact the critical health care response of these areas regardless of their potentially high healthcare capacity compared to more rural and less connected counterparts (85 cases per 100,000). Accounting for the spatially uneven disease diffusion linked to the geographical distribution of the critical care resources is essential in designing effective prevention and control programmes aimed at reducing the impact of COVID-19 pandemic.