The Complexity of Zadeh's Pivot Rule
The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18469
- Acceso en línea:
- https://directory.doabooks.org/handle/20.500.12854/31197
http://hdl.handle.net/20.500.12010/18469
https://doi.org/10.30819/5206
- Palabra clave:
- Mathematics
Computers
Computer Science
Lógica difusa
Matemáticas difusas
Lógica simbólica y matemática
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_64b810ecb8a1973b99b4a635d93947b0 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18469 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The Complexity of Zadeh's Pivot Rule |
title |
The Complexity of Zadeh's Pivot Rule |
spellingShingle |
The Complexity of Zadeh's Pivot Rule Mathematics Computers Computer Science Lógica difusa Matemáticas difusas Lógica simbólica y matemática |
title_short |
The Complexity of Zadeh's Pivot Rule |
title_full |
The Complexity of Zadeh's Pivot Rule |
title_fullStr |
The Complexity of Zadeh's Pivot Rule |
title_full_unstemmed |
The Complexity of Zadeh's Pivot Rule |
title_sort |
The Complexity of Zadeh's Pivot Rule |
dc.subject.spa.fl_str_mv |
Mathematics Computers Computer Science |
topic |
Mathematics Computers Computer Science Lógica difusa Matemáticas difusas Lógica simbólica y matemática |
dc.subject.lemb.spa.fl_str_mv |
Lógica difusa Matemáticas difusas Lógica simbólica y matemática |
description |
The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential lower bounds were found, while a probabilistic pivot rule exists that guarantees termination in expected subexponential time. One deterministic pivot rule that is of special interest is Zadeh's pivot rule since it was the most promising candidate for a polynomial pivot rule for a long time. In 2011, Friedmann proved that this is not true by providing an example forcing the Simplex algorithm to perform at least a subexponential number of iterations in the worst case when using Zadeh's pivot rule. Still, it was not known whether Zadeh's pivot rule might achieve subexponential worst case running time. Next to analyzing Friedmann's construction in detail, we develop the first exponential lower bound for Zadeh's pivot rule. This closes a long-standing open problem by ruling out this pivot rule as a candidate for a deterministic, subexponential pivot rule in several areas of linear optimization and game theory. |
publishDate |
2020 |
dc.date.created.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-03-31T15:33:01Z |
dc.date.available.none.fl_str_mv |
2021-03-31T15:33:01Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://directory.doabooks.org/handle/20.500.12854/31197 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/18469 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.30819/5206 |
url |
https://directory.doabooks.org/handle/20.500.12854/31197 http://hdl.handle.net/20.500.12010/18469 https://doi.org/10.30819/5206 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
338 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Logos Verlag Berlin |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/3/Portada%20libros%20en%20acceso%20abierto.pdf.jpg https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/1/Portada%20libros%20en%20acceso%20abierto.pdf |
bitstream.checksum.fl_str_mv |
baba314677a6b940f072575a13bb6906 68983bd13db840a8026b2eb82502eab8 c04e58be58ca6ab51e01dfb535d96fa2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213765836570624 |
spelling |
2021-03-31T15:33:01Z2021-03-31T15:33:01Z2020https://directory.doabooks.org/handle/20.500.12854/31197http://hdl.handle.net/20.500.12010/18469https://doi.org/10.30819/5206The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential lower bounds were found, while a probabilistic pivot rule exists that guarantees termination in expected subexponential time. One deterministic pivot rule that is of special interest is Zadeh's pivot rule since it was the most promising candidate for a polynomial pivot rule for a long time. In 2011, Friedmann proved that this is not true by providing an example forcing the Simplex algorithm to perform at least a subexponential number of iterations in the worst case when using Zadeh's pivot rule. Still, it was not known whether Zadeh's pivot rule might achieve subexponential worst case running time. Next to analyzing Friedmann's construction in detail, we develop the first exponential lower bound for Zadeh's pivot rule. This closes a long-standing open problem by ruling out this pivot rule as a candidate for a deterministic, subexponential pivot rule in several areas of linear optimization and game theory.338 páginasapplication/pdfengLogos Verlag BerlinMathematicsComputersComputer ScienceLógica difusaMatemáticas difusasLógica simbólica y matemáticaThe Complexity of Zadeh's Pivot RuleAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2http://purl.org/coar/resource_type/c_2f33Hopp, Alexander VincentLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAILPortada libros en acceso abierto.pdf.jpgPortada libros en acceso abierto.pdf.jpgIM Thumbnailimage/jpeg10587https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/3/Portada%20libros%20en%20acceso%20abierto.pdf.jpg68983bd13db840a8026b2eb82502eab8MD53open accessORIGINALPortada libros en acceso abierto.pdfPortada libros en acceso abierto.pdfPortadaapplication/pdf42761https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/1/Portada%20libros%20en%20acceso%20abierto.pdfc04e58be58ca6ab51e01dfb535d96fa2MD51open access20.500.12010/18469oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/184692021-03-31 23:01:36.594open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |