The Complexity of Zadeh's Pivot Rule

The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18469
Acceso en línea:
https://directory.doabooks.org/handle/20.500.12854/31197
http://hdl.handle.net/20.500.12010/18469
https://doi.org/10.30819/5206
Palabra clave:
Mathematics
Computers
Computer Science
Lógica difusa
Matemáticas difusas
Lógica simbólica y matemática
Rights
License
Abierto (Texto Completo)
id UTADEO2_64b810ecb8a1973b99b4a635d93947b0
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18469
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv The Complexity of Zadeh's Pivot Rule
title The Complexity of Zadeh's Pivot Rule
spellingShingle The Complexity of Zadeh's Pivot Rule
Mathematics
Computers
Computer Science
Lógica difusa
Matemáticas difusas
Lógica simbólica y matemática
title_short The Complexity of Zadeh's Pivot Rule
title_full The Complexity of Zadeh's Pivot Rule
title_fullStr The Complexity of Zadeh's Pivot Rule
title_full_unstemmed The Complexity of Zadeh's Pivot Rule
title_sort The Complexity of Zadeh's Pivot Rule
dc.subject.spa.fl_str_mv Mathematics
Computers
Computer Science
topic Mathematics
Computers
Computer Science
Lógica difusa
Matemáticas difusas
Lógica simbólica y matemática
dc.subject.lemb.spa.fl_str_mv Lógica difusa
Matemáticas difusas
Lógica simbólica y matemática
description The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential lower bounds were found, while a probabilistic pivot rule exists that guarantees termination in expected subexponential time. One deterministic pivot rule that is of special interest is Zadeh's pivot rule since it was the most promising candidate for a polynomial pivot rule for a long time. In 2011, Friedmann proved that this is not true by providing an example forcing the Simplex algorithm to perform at least a subexponential number of iterations in the worst case when using Zadeh's pivot rule. Still, it was not known whether Zadeh's pivot rule might achieve subexponential worst case running time. Next to analyzing Friedmann's construction in detail, we develop the first exponential lower bound for Zadeh's pivot rule. This closes a long-standing open problem by ruling out this pivot rule as a candidate for a deterministic, subexponential pivot rule in several areas of linear optimization and game theory.
publishDate 2020
dc.date.created.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-03-31T15:33:01Z
dc.date.available.none.fl_str_mv 2021-03-31T15:33:01Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.other.none.fl_str_mv https://directory.doabooks.org/handle/20.500.12854/31197
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/18469
dc.identifier.doi.none.fl_str_mv https://doi.org/10.30819/5206
url https://directory.doabooks.org/handle/20.500.12854/31197
http://hdl.handle.net/20.500.12010/18469
https://doi.org/10.30819/5206
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 338 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Logos Verlag Berlin
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/3/Portada%20libros%20en%20acceso%20abierto.pdf.jpg
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/1/Portada%20libros%20en%20acceso%20abierto.pdf
bitstream.checksum.fl_str_mv baba314677a6b940f072575a13bb6906
68983bd13db840a8026b2eb82502eab8
c04e58be58ca6ab51e01dfb535d96fa2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213765836570624
spelling 2021-03-31T15:33:01Z2021-03-31T15:33:01Z2020https://directory.doabooks.org/handle/20.500.12854/31197http://hdl.handle.net/20.500.12010/18469https://doi.org/10.30819/5206The Simplex algorithm is one of the most important algorithms in discrete optimization, and is the most used algorithm for solving linear programs in practice. In the last 50 years, several pivot rules for this algorithm have been proposed and studied. For most deterministic pivot rules, exponential lower bounds were found, while a probabilistic pivot rule exists that guarantees termination in expected subexponential time. One deterministic pivot rule that is of special interest is Zadeh's pivot rule since it was the most promising candidate for a polynomial pivot rule for a long time. In 2011, Friedmann proved that this is not true by providing an example forcing the Simplex algorithm to perform at least a subexponential number of iterations in the worst case when using Zadeh's pivot rule. Still, it was not known whether Zadeh's pivot rule might achieve subexponential worst case running time. Next to analyzing Friedmann's construction in detail, we develop the first exponential lower bound for Zadeh's pivot rule. This closes a long-standing open problem by ruling out this pivot rule as a candidate for a deterministic, subexponential pivot rule in several areas of linear optimization and game theory.338 páginasapplication/pdfengLogos Verlag BerlinMathematicsComputersComputer ScienceLógica difusaMatemáticas difusasLógica simbólica y matemáticaThe Complexity of Zadeh's Pivot RuleAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2http://purl.org/coar/resource_type/c_2f33Hopp, Alexander VincentLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAILPortada libros en acceso abierto.pdf.jpgPortada libros en acceso abierto.pdf.jpgIM Thumbnailimage/jpeg10587https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/3/Portada%20libros%20en%20acceso%20abierto.pdf.jpg68983bd13db840a8026b2eb82502eab8MD53open accessORIGINALPortada libros en acceso abierto.pdfPortada libros en acceso abierto.pdfPortadaapplication/pdf42761https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18469/1/Portada%20libros%20en%20acceso%20abierto.pdfc04e58be58ca6ab51e01dfb535d96fa2MD51open access20.500.12010/18469oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/184692021-03-31 23:01:36.594open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==