Geometrie und Topologie von Trajektorienoptimierung für vollautomatisches Fahren
In order to establish general principles in the topic of motion planning for fully-automated driving, an intuitive problem statement in the form of an Euler–Lagrange Model is derived and transformed into a corresponding Hidden Markov Model for global optimization. Geometric and topologic considerati...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- ger
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/17591
- Acceso en línea:
- https://directory.doabooks.org/handle/20.500.12854/48490
http://hdl.handle.net/20.500.12010/17591
- Palabra clave:
- SPARC
Probabilistic environment modelling
Optimierung
SPARC
Probabilistic environment modelling
Optimierung
- Rights
- License
- Abierto (Texto Completo)
Summary: | In order to establish general principles in the topic of motion planning for fully-automated driving, an intuitive problem statement in the form of an Euler–Lagrange Model is derived and transformed into a corresponding Hidden Markov Model for global optimization. Geometric and topologic considerations lead to a probabilistic environment modelling in combination with the C² model and result in general conclusions about the structure of traffic situations. |
---|