Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models

The summer of 2013 was very good; we found a series of papers published by Gregory D. Smith and his coauthors. We spent several weeks trying to understand the paper [35], which introduces and carefully studies a stochastic model of calcium release from internal stores in cells. Then we found a whole...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2016
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18751
Acceso en línea:
https://directory.doabooks.org/handle/20.500.12854/28702
http://hdl.handle.net/20.500.12010/18751
Palabra clave:
Computational Science and Engineering
Biomedicine general
Computer Imaging
Medicamentos
Agentes nootrópicos
Agentes neuroprotectores
Rights
License
Abierto (Texto Completo)
id UTADEO2_5f52d10b821c2fa54ad0286830f3cb0c
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18751
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
title Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
spellingShingle Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
Computational Science and Engineering
Biomedicine general
Computer Imaging
Medicamentos
Agentes nootrópicos
Agentes neuroprotectores
title_short Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
title_full Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
title_fullStr Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
title_full_unstemmed Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
title_sort Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models
dc.subject.spa.fl_str_mv Computational Science and Engineering
Biomedicine general
Computer Imaging
topic Computational Science and Engineering
Biomedicine general
Computer Imaging
Medicamentos
Agentes nootrópicos
Agentes neuroprotectores
dc.subject.lemb.spa.fl_str_mv Medicamentos
Agentes nootrópicos
Agentes neuroprotectores
description The summer of 2013 was very good; we found a series of papers published by Gregory D. Smith and his coauthors. We spent several weeks trying to understand the paper [35], which introduces and carefully studies a stochastic model of calcium release from internal stores in cells. Then we found a whole series of papers [36, 57, 102, 103], and the results more or less kept us busy for months. The beauty of the theory presented in these papers is that they introduce a systematic way of analyzing models that are of great importance for understanding essential physiological processes. So what is this theory about? It has been fairly well known for a while that stochastic models are useful in studying the release of calcium ions from internal storage in living cells. Some authors even argue that this process is stochastic. That is debatable, but it is quite clear that stochastic models are well suited to study such processes. Stochastic models are also very well suited to study the change of the transmembrane potential resulting from the flow of ions through channels in the cell membrane. Both these processes are of fundamental importance in understanding the function of excitable cells. In both applications, ions flow from one domain to another according to electrochemical gradients, depending on whether the channel is in a conducting or nonconducting mode. The state of the channel is described by a Markov model, which is a wonderful tool used to systematically represent how an ion channel or a receptor opens or closes based on the surrounding conditions. In this context, the contribution of the papers listed above is to present a systematic way of analyzing the stochastic models in terms of formulating deterministic differential equations describing the probability density distributions of the states of the Markov models.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-04-15T20:29:21Z
dc.date.available.none.fl_str_mv 2021-04-15T20:29:21Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 9783319398891
dc.identifier.other.none.fl_str_mv https://directory.doabooks.org/handle/20.500.12854/28702
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/18751
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-30030-6
identifier_str_mv 9783319398891
10.1007/978-3-319-30030-6
url https://directory.doabooks.org/handle/20.500.12854/28702
http://hdl.handle.net/20.500.12010/18751
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 261 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/1/1001929.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/3/1001929.pdf.jpg
bitstream.checksum.fl_str_mv 51e8485744df4f1e5b7baefb4fe569bb
baba314677a6b940f072575a13bb6906
2fa25a18f9017f4dfccdbfd35c676a1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213812904001536
spelling 2021-04-15T20:29:21Z2021-04-15T20:29:21Z20169783319398891https://directory.doabooks.org/handle/20.500.12854/28702http://hdl.handle.net/20.500.12010/1875110.1007/978-3-319-30030-6The summer of 2013 was very good; we found a series of papers published by Gregory D. Smith and his coauthors. We spent several weeks trying to understand the paper [35], which introduces and carefully studies a stochastic model of calcium release from internal stores in cells. Then we found a whole series of papers [36, 57, 102, 103], and the results more or less kept us busy for months. The beauty of the theory presented in these papers is that they introduce a systematic way of analyzing models that are of great importance for understanding essential physiological processes. So what is this theory about? It has been fairly well known for a while that stochastic models are useful in studying the release of calcium ions from internal storage in living cells. Some authors even argue that this process is stochastic. That is debatable, but it is quite clear that stochastic models are well suited to study such processes. Stochastic models are also very well suited to study the change of the transmembrane potential resulting from the flow of ions through channels in the cell membrane. Both these processes are of fundamental importance in understanding the function of excitable cells. In both applications, ions flow from one domain to another according to electrochemical gradients, depending on whether the channel is in a conducting or nonconducting mode. The state of the channel is described by a Markov model, which is a wonderful tool used to systematically represent how an ion channel or a receptor opens or closes based on the surrounding conditions. In this context, the contribution of the papers listed above is to present a systematic way of analyzing the stochastic models in terms of formulating deterministic differential equations describing the probability density distributions of the states of the Markov models.261 páginasapplication/pdfengSpringer NatureComputational Science and EngineeringBiomedicine generalComputer ImagingMedicamentosAgentes nootrópicosAgentes neuroprotectoresComputing Characterizations of Drugs for Ion Channels and Receptors Using Markov ModelsAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2http://purl.org/coar/resource_type/c_2f33Tveito, AslakLines, Glenn T.ORIGINAL1001929.pdf1001929.pdfVer documentoapplication/pdf7517065https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/1/1001929.pdf51e8485744df4f1e5b7baefb4fe569bbMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAIL1001929.pdf.jpg1001929.pdf.jpgIM Thumbnailimage/jpeg15669https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18751/3/1001929.pdf.jpg2fa25a18f9017f4dfccdbfd35c676a1aMD53open access20.500.12010/18751oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/187512021-04-15 23:02:40.486open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==