Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling

The presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/28016
Acceso en línea:
https://link.springer.com/article/10.1007/s11367-020-01859-w
http://hdl.handle.net/20.500.12010/28016
http://expeditiorepositorio.utadeo.edu.co
Palabra clave:
Accounting for correlational structures
Copula modeling
Minería de datos
Estadística
Ciclos
Rights
License
Abierto (Texto Completo)
id UTADEO2_5e6131962148d33080909db1f1f10aab
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/28016
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
title Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
spellingShingle Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
Accounting for correlational structures
Copula modeling
Minería de datos
Estadística
Ciclos
title_short Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
title_full Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
title_fullStr Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
title_full_unstemmed Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
title_sort Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
dc.subject.spa.fl_str_mv Accounting for correlational structures
Copula modeling
topic Accounting for correlational structures
Copula modeling
Minería de datos
Estadística
Ciclos
dc.subject.lemb.spa.fl_str_mv Minería de datos
Estadística
Ciclos
description The presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula modeling to build joint multivariate sampling spaces, irrespective of the marginal distributions of the environmental indicators, for LCA uncertainty analyses. To exemplify the proposed method, we integrate the copula modeling to the stochastic multiattribute analysis (SMAA) method to perform the normalization and weighting steps in a comparative agricultural LCA. Methods An attributional LCA was performed to compare the environmental impact of two tomato production systems (GH, greenhouse; OF, open field) with different intensification levels. To choose the best environmental performance system, we implemented the outranking procedure of the SMAA method but based on the true multivariate distribution of the environmental indicators. As required by the SMAA method, initially, we fitted skewed multivariate distributions among the environmental indicators but accounting for their correlation structure through the copula method. Afterwards, the standard SMAA procedure was followed, leading to the calculation of overall scores indicating the environmental performance of the systems under comparison. Results and discussion After individual LCAs were performed for each grower, the variability observed in the primary data was propagated to the environmental indicators. The marginal distributions of the environmental indicators showed a right skewed trend which were fitted to gamma, log-normal, or Weibull distributions as applicable. The application of the copula method for the environmental indicators of the GH and OF systems resulted in D-vine models consisting of 46 and 45 bivariate copulas requiring 47 parameters each, respectively. Sampling the multivariate space configured by the D-vine models and integrating it with the SMAA method indicated that the OF system is more likely to have a better environmental performance with a rank acceptability index (RAI) of 57.6% while the GH system yielded a lower RAI (42.4%). Conclusions We applied a stochastic unbiased approach to compare the environmental performance of agricultural systems but recognizing the correlation structure of the indicators. The copula method introduced here can be applied to uncertainty or multicriteria decision analysis where correlation needs to be accounted for. Joining the copula and the SMAA methods to produce an unbiased preference indicator allows to evaluate scenarios in a realistic way, producing results that can easily be communicated.
publishDate 2021
dc.date.created.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-23T17:11:11Z
dc.date.available.none.fl_str_mv 2022-08-23T17:11:11Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 0948-3349
dc.identifier.other.spa.fl_str_mv https://link.springer.com/article/10.1007/s11367-020-01859-w
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/28016
dc.identifier.repourl.spa.fl_str_mv http://expeditiorepositorio.utadeo.edu.co
dc.identifier.orcid.spa.fl_str_mv
identifier_str_mv 0948-3349

url https://link.springer.com/article/10.1007/s11367-020-01859-w
http://hdl.handle.net/20.500.12010/28016
http://expeditiorepositorio.utadeo.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv text/html
dc.format.rda.spa.fl_str_mv 1 recurso en línea (archivo de texto)
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Bogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2021
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/3/Captura.PNG
bitstream.checksum.fl_str_mv baba314677a6b940f072575a13bb6906
d0ba8d1a88780c9cc17dc798f1363323
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditiorepositorio@utadeo.edu.co
_version_ 1818152582543048704
spelling Colombia2022-08-23T17:11:11Z2022-08-23T17:11:11Z20210948-3349https://link.springer.com/article/10.1007/s11367-020-01859-whttp://hdl.handle.net/20.500.12010/28016http://expeditiorepositorio.utadeo.edu.coThe presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula modeling to build joint multivariate sampling spaces, irrespective of the marginal distributions of the environmental indicators, for LCA uncertainty analyses. To exemplify the proposed method, we integrate the copula modeling to the stochastic multiattribute analysis (SMAA) method to perform the normalization and weighting steps in a comparative agricultural LCA. Methods An attributional LCA was performed to compare the environmental impact of two tomato production systems (GH, greenhouse; OF, open field) with different intensification levels. To choose the best environmental performance system, we implemented the outranking procedure of the SMAA method but based on the true multivariate distribution of the environmental indicators. As required by the SMAA method, initially, we fitted skewed multivariate distributions among the environmental indicators but accounting for their correlation structure through the copula method. Afterwards, the standard SMAA procedure was followed, leading to the calculation of overall scores indicating the environmental performance of the systems under comparison. Results and discussion After individual LCAs were performed for each grower, the variability observed in the primary data was propagated to the environmental indicators. The marginal distributions of the environmental indicators showed a right skewed trend which were fitted to gamma, log-normal, or Weibull distributions as applicable. The application of the copula method for the environmental indicators of the GH and OF systems resulted in D-vine models consisting of 46 and 45 bivariate copulas requiring 47 parameters each, respectively. Sampling the multivariate space configured by the D-vine models and integrating it with the SMAA method indicated that the OF system is more likely to have a better environmental performance with a rank acceptability index (RAI) of 57.6% while the GH system yielded a lower RAI (42.4%). Conclusions We applied a stochastic unbiased approach to compare the environmental performance of agricultural systems but recognizing the correlation structure of the indicators. The copula method introduced here can be applied to uncertainty or multicriteria decision analysis where correlation needs to be accounted for. Joining the copula and the SMAA methods to produce an unbiased preference indicator allows to evaluate scenarios in a realistic way, producing results that can easily be communicated.text/html1 recurso en línea (archivo de texto)engBogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2021Accounting for correlational structuresCopula modelingMinería de datosEstadísticaCiclosAccounting for correlational structures in stochastic comparative life cycle assessments through copula modelingArtículoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Gil, RodrigoBojacá, Carlos RicardoSchrevens, EddieLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAILCaptura.PNGCaptura.PNGImagenimage/png57451https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/3/Captura.PNGd0ba8d1a88780c9cc17dc798f1363323MD53open access20.500.12010/28016oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/280162022-08-29 10:54:52.104metadata only accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditiorepositorio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==