Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling
The presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/28016
- Acceso en línea:
- https://link.springer.com/article/10.1007/s11367-020-01859-w
http://hdl.handle.net/20.500.12010/28016
http://expeditiorepositorio.utadeo.edu.co
- Palabra clave:
- Accounting for correlational structures
Copula modeling
Minería de datos
Estadística
Ciclos
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_5e6131962148d33080909db1f1f10aab |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/28016 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
title |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
spellingShingle |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling Accounting for correlational structures Copula modeling Minería de datos Estadística Ciclos |
title_short |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
title_full |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
title_fullStr |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
title_full_unstemmed |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
title_sort |
Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling |
dc.subject.spa.fl_str_mv |
Accounting for correlational structures Copula modeling |
topic |
Accounting for correlational structures Copula modeling Minería de datos Estadística Ciclos |
dc.subject.lemb.spa.fl_str_mv |
Minería de datos Estadística Ciclos |
description |
The presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula modeling to build joint multivariate sampling spaces, irrespective of the marginal distributions of the environmental indicators, for LCA uncertainty analyses. To exemplify the proposed method, we integrate the copula modeling to the stochastic multiattribute analysis (SMAA) method to perform the normalization and weighting steps in a comparative agricultural LCA. Methods An attributional LCA was performed to compare the environmental impact of two tomato production systems (GH, greenhouse; OF, open field) with different intensification levels. To choose the best environmental performance system, we implemented the outranking procedure of the SMAA method but based on the true multivariate distribution of the environmental indicators. As required by the SMAA method, initially, we fitted skewed multivariate distributions among the environmental indicators but accounting for their correlation structure through the copula method. Afterwards, the standard SMAA procedure was followed, leading to the calculation of overall scores indicating the environmental performance of the systems under comparison. Results and discussion After individual LCAs were performed for each grower, the variability observed in the primary data was propagated to the environmental indicators. The marginal distributions of the environmental indicators showed a right skewed trend which were fitted to gamma, log-normal, or Weibull distributions as applicable. The application of the copula method for the environmental indicators of the GH and OF systems resulted in D-vine models consisting of 46 and 45 bivariate copulas requiring 47 parameters each, respectively. Sampling the multivariate space configured by the D-vine models and integrating it with the SMAA method indicated that the OF system is more likely to have a better environmental performance with a rank acceptability index (RAI) of 57.6% while the GH system yielded a lower RAI (42.4%). Conclusions We applied a stochastic unbiased approach to compare the environmental performance of agricultural systems but recognizing the correlation structure of the indicators. The copula method introduced here can be applied to uncertainty or multicriteria decision analysis where correlation needs to be accounted for. Joining the copula and the SMAA methods to produce an unbiased preference indicator allows to evaluate scenarios in a realistic way, producing results that can easily be communicated. |
publishDate |
2021 |
dc.date.created.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-08-23T17:11:11Z |
dc.date.available.none.fl_str_mv |
2022-08-23T17:11:11Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0948-3349 |
dc.identifier.other.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s11367-020-01859-w |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/28016 |
dc.identifier.repourl.spa.fl_str_mv |
http://expeditiorepositorio.utadeo.edu.co |
dc.identifier.orcid.spa.fl_str_mv |
|
identifier_str_mv |
0948-3349 |
url |
https://link.springer.com/article/10.1007/s11367-020-01859-w http://hdl.handle.net/20.500.12010/28016 http://expeditiorepositorio.utadeo.edu.co |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
text/html |
dc.format.rda.spa.fl_str_mv |
1 recurso en línea (archivo de texto) |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Bogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2021 |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/3/Captura.PNG |
bitstream.checksum.fl_str_mv |
baba314677a6b940f072575a13bb6906 d0ba8d1a88780c9cc17dc798f1363323 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditiorepositorio@utadeo.edu.co |
_version_ |
1818152582543048704 |
spelling |
Colombia2022-08-23T17:11:11Z2022-08-23T17:11:11Z20210948-3349https://link.springer.com/article/10.1007/s11367-020-01859-whttp://hdl.handle.net/20.500.12010/28016http://expeditiorepositorio.utadeo.edu.coThe presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula modeling to build joint multivariate sampling spaces, irrespective of the marginal distributions of the environmental indicators, for LCA uncertainty analyses. To exemplify the proposed method, we integrate the copula modeling to the stochastic multiattribute analysis (SMAA) method to perform the normalization and weighting steps in a comparative agricultural LCA. Methods An attributional LCA was performed to compare the environmental impact of two tomato production systems (GH, greenhouse; OF, open field) with different intensification levels. To choose the best environmental performance system, we implemented the outranking procedure of the SMAA method but based on the true multivariate distribution of the environmental indicators. As required by the SMAA method, initially, we fitted skewed multivariate distributions among the environmental indicators but accounting for their correlation structure through the copula method. Afterwards, the standard SMAA procedure was followed, leading to the calculation of overall scores indicating the environmental performance of the systems under comparison. Results and discussion After individual LCAs were performed for each grower, the variability observed in the primary data was propagated to the environmental indicators. The marginal distributions of the environmental indicators showed a right skewed trend which were fitted to gamma, log-normal, or Weibull distributions as applicable. The application of the copula method for the environmental indicators of the GH and OF systems resulted in D-vine models consisting of 46 and 45 bivariate copulas requiring 47 parameters each, respectively. Sampling the multivariate space configured by the D-vine models and integrating it with the SMAA method indicated that the OF system is more likely to have a better environmental performance with a rank acceptability index (RAI) of 57.6% while the GH system yielded a lower RAI (42.4%). Conclusions We applied a stochastic unbiased approach to compare the environmental performance of agricultural systems but recognizing the correlation structure of the indicators. The copula method introduced here can be applied to uncertainty or multicriteria decision analysis where correlation needs to be accounted for. Joining the copula and the SMAA methods to produce an unbiased preference indicator allows to evaluate scenarios in a realistic way, producing results that can easily be communicated.text/html1 recurso en línea (archivo de texto)engBogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2021Accounting for correlational structuresCopula modelingMinería de datosEstadísticaCiclosAccounting for correlational structures in stochastic comparative life cycle assessments through copula modelingArtículoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Gil, RodrigoBojacá, Carlos RicardoSchrevens, EddieLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/2/license.txtbaba314677a6b940f072575a13bb6906MD52open accessTHUMBNAILCaptura.PNGCaptura.PNGImagenimage/png57451https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/28016/3/Captura.PNGd0ba8d1a88780c9cc17dc798f1363323MD53open access20.500.12010/28016oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/280162022-08-29 10:54:52.104metadata only accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditiorepositorio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |