Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule

The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SE...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12032
Acceso en línea:
https://doi.org/10.1016/j.chaos.2020.109891
http://hdl.handle.net/20.500.12010/12032
Palabra clave:
Population kinetics
Optimization
Pandemic
Prediction
Corona
SARS-CoV-2
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Acceso restringido
id UTADEO2_559aa341a74d6c16d26f81995747930c
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12032
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
title Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
spellingShingle Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
Population kinetics
Optimization
Pandemic
Prediction
Corona
SARS-CoV-2
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
title_short Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
title_full Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
title_fullStr Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
title_full_unstemmed Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
title_sort Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
dc.subject.spa.fl_str_mv Population kinetics
Optimization
Pandemic
Prediction
Corona
SARS-CoV-2
topic Population kinetics
Optimization
Pandemic
Prediction
Corona
SARS-CoV-2
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
dc.subject.lemb.spa.fl_str_mv Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
description The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SEIR models has remained largely unaltered—presuming that COVID-19 may be just “another epidemic”. We here take an alternative approach, by investigating the relevance of one key ingredient of the SEIR models, namely the death kinetics law. The latter is compared to an alternative approach, which we call infection-todeath delay rule. For that purpose, we check how well these two mathematical formulations are able to represent the publicly available country-specific data on recorded fatalities, across a selection of 57 different nations. Thereby, we consider that the model-governing parameters—namely, the death transmission coefficient for the death kinetics model, as well as the apparent fatality-to-case fraction and the characteristic fatal illness period for the infection-to-death delay rule—are time-invariant. For 55 out of the 57 countries, the infection-to-death delay rule turns out to represent the actual situation significantly more precisely than the classical death kinetics rule. We regard this as an important step towards making SEIR-approaches more fit for the COVID-19 spreading prediction challenge.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-20T18:07:12Z
dc.date.available.none.fl_str_mv 2020-08-20T18:07:12Z
dc.date.created.none.fl_str_mv 2020
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.spa.fl_str_mv 0960-0779
dc.identifier.other.spa.fl_str_mv https://doi.org/10.1016/j.chaos.2020.109891
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/12032
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.chaos.2020.109891
identifier_str_mv 0960-0779
url https://doi.org/10.1016/j.chaos.2020.109891
http://hdl.handle.net/20.500.12010/12032
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.local.spa.fl_str_mv Acceso restringido
rights_invalid_str_mv Acceso restringido
http://purl.org/coar/access_right/c_f1cf
dc.format.mimetype.spa.fl_str_mv image/jepg
dc.publisher.spa.fl_str_mv Chaos, Solitons and Fractals
dc.source.spa.fl_str_mv reponame:Expeditio Repositorio Institucional UJTL
instname:Universidad de Bogotá Jorge Tadeo Lozano
instname_str Universidad de Bogotá Jorge Tadeo Lozano
institution Universidad de Bogotá Jorge Tadeo Lozano
reponame_str Expeditio Repositorio Institucional UJTL
collection Expeditio Repositorio Institucional UJTL
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/1/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/3/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/4/Captura.PNG
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/5/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpg
bitstream.checksum.fl_str_mv fb5304f7a73937b43b3cee361a96fc3b
d53b8dec6b10fad9db05fa83604fc869
abceeb1c943c50d3343516f9dbfc110f
fb5304f7a73937b43b3cee361a96fc3b
6e9aae4491cf297ce0137e991c242815
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1818152792054824960
spelling 2020-08-20T18:07:12Z2020-08-20T18:07:12Z20200960-0779https://doi.org/10.1016/j.chaos.2020.109891http://hdl.handle.net/20.500.12010/12032https://doi.org/10.1016/j.chaos.2020.109891The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SEIR models has remained largely unaltered—presuming that COVID-19 may be just “another epidemic”. We here take an alternative approach, by investigating the relevance of one key ingredient of the SEIR models, namely the death kinetics law. The latter is compared to an alternative approach, which we call infection-todeath delay rule. For that purpose, we check how well these two mathematical formulations are able to represent the publicly available country-specific data on recorded fatalities, across a selection of 57 different nations. Thereby, we consider that the model-governing parameters—namely, the death transmission coefficient for the death kinetics model, as well as the apparent fatality-to-case fraction and the characteristic fatal illness period for the infection-to-death delay rule—are time-invariant. For 55 out of the 57 countries, the infection-to-death delay rule turns out to represent the actual situation significantly more precisely than the classical death kinetics rule. We regard this as an important step towards making SEIR-approaches more fit for the COVID-19 spreading prediction challenge.image/jepgengChaos, Solitons and Fractalsreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoPopulation kineticsOptimizationPandemicPredictionCoronaSARS-CoV-2Síndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusMathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay ruleArtículohttp://purl.org/coar/resource_type/c_6501Acceso restringidohttp://purl.org/coar/access_right/c_f1cfScheiner, StefanUkaj, NiketaHellmich, ChristianORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png175000https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/1/Captura.PNGfb5304f7a73937b43b3cee361a96fc3bMD51open accessMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfArtículo reservadoapplication/pdf1263968https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/3/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfd53b8dec6b10fad9db05fa83604fc869MD53embargoed access|||2200-08-20LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png175000https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/4/Captura.PNGfb5304f7a73937b43b3cee361a96fc3bMD54open accessMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpgMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpgIM Thumbnailimage/jpeg22429https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/5/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpg6e9aae4491cf297ce0137e991c242815MD55open access20.500.12010/12032oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/120322020-08-20 13:07:12.079open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==