Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule
The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SE...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12032
- Acceso en línea:
- https://doi.org/10.1016/j.chaos.2020.109891
http://hdl.handle.net/20.500.12010/12032
- Palabra clave:
- Population kinetics
Optimization
Pandemic
Prediction
Corona
SARS-CoV-2
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Acceso restringido
id |
UTADEO2_559aa341a74d6c16d26f81995747930c |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12032 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
title |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
spellingShingle |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule Population kinetics Optimization Pandemic Prediction Corona SARS-CoV-2 Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
title_full |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
title_fullStr |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
title_full_unstemmed |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
title_sort |
Mathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay rule |
dc.subject.spa.fl_str_mv |
Population kinetics Optimization Pandemic Prediction Corona SARS-CoV-2 |
topic |
Population kinetics Optimization Pandemic Prediction Corona SARS-CoV-2 Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SEIR models has remained largely unaltered—presuming that COVID-19 may be just “another epidemic”. We here take an alternative approach, by investigating the relevance of one key ingredient of the SEIR models, namely the death kinetics law. The latter is compared to an alternative approach, which we call infection-todeath delay rule. For that purpose, we check how well these two mathematical formulations are able to represent the publicly available country-specific data on recorded fatalities, across a selection of 57 different nations. Thereby, we consider that the model-governing parameters—namely, the death transmission coefficient for the death kinetics model, as well as the apparent fatality-to-case fraction and the characteristic fatal illness period for the infection-to-death delay rule—are time-invariant. For 55 out of the 57 countries, the infection-to-death delay rule turns out to represent the actual situation significantly more precisely than the classical death kinetics rule. We regard this as an important step towards making SEIR-approaches more fit for the COVID-19 spreading prediction challenge. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-20T18:07:12Z |
dc.date.available.none.fl_str_mv |
2020-08-20T18:07:12Z |
dc.date.created.none.fl_str_mv |
2020 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
0960-0779 |
dc.identifier.other.spa.fl_str_mv |
https://doi.org/10.1016/j.chaos.2020.109891 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/12032 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.chaos.2020.109891 |
identifier_str_mv |
0960-0779 |
url |
https://doi.org/10.1016/j.chaos.2020.109891 http://hdl.handle.net/20.500.12010/12032 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Acceso restringido http://purl.org/coar/access_right/c_f1cf |
dc.format.mimetype.spa.fl_str_mv |
image/jepg |
dc.publisher.spa.fl_str_mv |
Chaos, Solitons and Fractals |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/1/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/3/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/4/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/5/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpg |
bitstream.checksum.fl_str_mv |
fb5304f7a73937b43b3cee361a96fc3b d53b8dec6b10fad9db05fa83604fc869 abceeb1c943c50d3343516f9dbfc110f fb5304f7a73937b43b3cee361a96fc3b 6e9aae4491cf297ce0137e991c242815 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1818152792054824960 |
spelling |
2020-08-20T18:07:12Z2020-08-20T18:07:12Z20200960-0779https://doi.org/10.1016/j.chaos.2020.109891http://hdl.handle.net/20.500.12010/12032https://doi.org/10.1016/j.chaos.2020.109891The COVID-19 pandemic has world-widely motivated numerous attempts to properly adjust classical epidemiological models, namely those of the SEIR-type, to the spreading characteristics of the novel Corona virus. In this context, the fundamental structure of the differential equations making up the SEIR models has remained largely unaltered—presuming that COVID-19 may be just “another epidemic”. We here take an alternative approach, by investigating the relevance of one key ingredient of the SEIR models, namely the death kinetics law. The latter is compared to an alternative approach, which we call infection-todeath delay rule. For that purpose, we check how well these two mathematical formulations are able to represent the publicly available country-specific data on recorded fatalities, across a selection of 57 different nations. Thereby, we consider that the model-governing parameters—namely, the death transmission coefficient for the death kinetics model, as well as the apparent fatality-to-case fraction and the characteristic fatal illness period for the infection-to-death delay rule—are time-invariant. For 55 out of the 57 countries, the infection-to-death delay rule turns out to represent the actual situation significantly more precisely than the classical death kinetics rule. We regard this as an important step towards making SEIR-approaches more fit for the COVID-19 spreading prediction challenge.image/jepgengChaos, Solitons and Fractalsreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoPopulation kineticsOptimizationPandemicPredictionCoronaSARS-CoV-2Síndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusMathematical modeling of COVID-19 fatality trends: Death kinetics law versus infection-to-death delay ruleArtículohttp://purl.org/coar/resource_type/c_6501Acceso restringidohttp://purl.org/coar/access_right/c_f1cfScheiner, StefanUkaj, NiketaHellmich, ChristianORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png175000https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/1/Captura.PNGfb5304f7a73937b43b3cee361a96fc3bMD51open accessMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfArtículo reservadoapplication/pdf1263968https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/3/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdfd53b8dec6b10fad9db05fa83604fc869MD53embargoed access|||2200-08-20LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png175000https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/4/Captura.PNGfb5304f7a73937b43b3cee361a96fc3bMD54open accessMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpgMathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpgIM Thumbnailimage/jpeg22429https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12032/5/Mathematical-modeling-of-COVID-19-fatality-trends--Death-_2020_Chaos--Solito.pdf.jpg6e9aae4491cf297ce0137e991c242815MD55open access20.500.12010/12032oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/120322020-08-20 13:07:12.079open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |