A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data
Objectives: Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. Methods:...
- Autores:
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/13931
- Acceso en línea:
- https://doi.org/10.1016/j.bjid.2020.06.009
http://hdl.handle.net/20.500.12010/13931
- Palabra clave:
- Diagnosis
COVID-19
SARS-CoV-2
Predictive score
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_4b42559a6b54023b45c2acc6b9fc6800 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/13931 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
title |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
spellingShingle |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data Diagnosis COVID-19 SARS-CoV-2 Predictive score Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
title_full |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
title_fullStr |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
title_full_unstemmed |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
title_sort |
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data |
dc.subject.spa.fl_str_mv |
Diagnosis COVID-19 SARS-CoV-2 Predictive score |
topic |
Diagnosis COVID-19 SARS-CoV-2 Predictive score Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
Objectives: Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. Methods: This cross-sectional study analyzed data from 100 patients admitted with suspected COVID-19. Predictive models of COVID-19 diagnosis were performed based on radiology, clinical and laboratory findings; bootstrapping was performed in order to account for overfitting. Results: A total of 29% of patients tested positive for SARS-CoV-2. Variables associated with COVID-19 diagnosis in multivariate analysis were leukocyte count ≤7.7 × 103 mm–3, LDH >273 U/L, and chest radiographic abnormality. A predictive score was built for COVID-19 diagnosis, with an area under ROC curve of 0.847 (95% CI 0.77–0.92), 96% sensitivity and 73.5% specificity. After bootstrapping, the corrected AUC for this model was 0.827 (95% CI 0.75–0.90). Conclusions: Considering unavailability of RT-PCR at some centers, as well as its questionable early sensitivity, other tools might be used in order to identify patients who should be prioritized for testing, re-testing and admission to isolated wards. We propose a predictive score that can be easily applied in clinical practice. This score is yet to be validated in larger populations |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-28T19:30:53Z |
dc.date.available.none.fl_str_mv |
2020-09-28T19:30:53Z |
dc.date.created.none.fl_str_mv |
2020 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
1413-8670 |
dc.identifier.other.spa.fl_str_mv |
https://doi.org/10.1016/j.bjid.2020.06.009 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/13931 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.bjid.2020.06.009 |
identifier_str_mv |
1413-8670 |
url |
https://doi.org/10.1016/j.bjid.2020.06.009 http://hdl.handle.net/20.500.12010/13931 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
The Brazilian Journal of ifectius deseases |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13931/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13931/3/A-predictive-score-for-COVID-19-diagnosis-using_2020_The-Brazilian-Journal-o.pdf.jpg |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f 372d3dee1ffc42e714f2aa3ede2a6691 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213535339642880 |
spelling |
2020-09-28T19:30:53Z2020-09-28T19:30:53Z20201413-8670https://doi.org/10.1016/j.bjid.2020.06.009http://hdl.handle.net/20.500.12010/13931https://doi.org/10.1016/j.bjid.2020.06.009Objectives: Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. Methods: This cross-sectional study analyzed data from 100 patients admitted with suspected COVID-19. Predictive models of COVID-19 diagnosis were performed based on radiology, clinical and laboratory findings; bootstrapping was performed in order to account for overfitting. Results: A total of 29% of patients tested positive for SARS-CoV-2. Variables associated with COVID-19 diagnosis in multivariate analysis were leukocyte count ≤7.7 × 103 mm–3, LDH >273 U/L, and chest radiographic abnormality. A predictive score was built for COVID-19 diagnosis, with an area under ROC curve of 0.847 (95% CI 0.77–0.92), 96% sensitivity and 73.5% specificity. After bootstrapping, the corrected AUC for this model was 0.827 (95% CI 0.75–0.90). Conclusions: Considering unavailability of RT-PCR at some centers, as well as its questionable early sensitivity, other tools might be used in order to identify patients who should be prioritized for testing, re-testing and admission to isolated wards. We propose a predictive score that can be easily applied in clinical practice. This score is yet to be validated in larger populations6 páginasapplication/pdfengThe Brazilian Journal of ifectius deseasesreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoDiagnosisCOVID-19SARS-CoV-2Predictive scoreSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusA predictive score for COVID-19 diagnosis using clinical, laboratory and chest image dataArtículohttp://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Vieceli, TarsilaOliveira Filho, Cilomar Martins deBerger, MarianaPetersen Saadi, MarinaSalvador, Pedro AntonioBressan Anizelli, LeonardoFreitas Crivelaro, Pedro Castilhos deButzke, MauricioSouza Zappelini, Roberta deSantos Seligman, Beatriz Graeff dosSeligman, RenatoLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13931/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILA-predictive-score-for-COVID-19-diagnosis-using_2020_The-Brazilian-Journal-o.pdf.jpgA-predictive-score-for-COVID-19-diagnosis-using_2020_The-Brazilian-Journal-o.pdf.jpgIM Thumbnailimage/jpeg13157https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/13931/3/A-predictive-score-for-COVID-19-diagnosis-using_2020_The-Brazilian-Journal-o.pdf.jpg372d3dee1ffc42e714f2aa3ede2a6691MD53open access20.500.12010/13931oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/139312021-03-17 20:04:13.943metadata only accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |