Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One
Artificial neural networks (ANNs) are evaluated for spectral interference correction using simulated and experimentally obtained spectral scans. Using the same data set (where possible), the predictive ability of shallow depth ANNs was validated against partial least squares (PLS, a traditional chem...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16802
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/artificial-neural-networks-anns-for-spectral-interference-correction-using-a-large-size-spectrometer
http://hdl.handle.net/20.500.12010/16802
- Palabra clave:
- Biología
Redes neuronales artificiales
Inteligencia artificial -- Robótica
Espectrometría de emisión óptica portátil
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_42dcbd3d4214a8cbbbc5cc6cf1fd8f1a |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16802 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
title |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
spellingShingle |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One Biología Redes neuronales artificiales Inteligencia artificial -- Robótica Espectrometría de emisión óptica portátil |
title_short |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
title_full |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
title_fullStr |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
title_full_unstemmed |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
title_sort |
Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One |
dc.subject.spa.fl_str_mv |
Biología |
topic |
Biología Redes neuronales artificiales Inteligencia artificial -- Robótica Espectrometría de emisión óptica portátil |
dc.subject.lemb.spa.fl_str_mv |
Redes neuronales artificiales Inteligencia artificial -- Robótica Espectrometría de emisión óptica portátil |
description |
Artificial neural networks (ANNs) are evaluated for spectral interference correction using simulated and experimentally obtained spectral scans. Using the same data set (where possible), the predictive ability of shallow depth ANNs was validated against partial least squares (PLS, a traditional chemometrics method). Spectral interference (in the form of overlaps between spectral lines) is a key problem in large-size, long focal length inductively coupled plasma-optical emission spectrometry (ICP-OES). Unless corrected, spectral interference can be sufficiently severe to the point of preventing precise and accurate analytical determinations. In miniaturized, microplasma-based optical emission spectrometry with a portable, short focal length spectrometer (having poorer resolution than its large-size counterpart), spectral interference becomes even more severe. To correct it, we are evaluating use of deep learning ANNs. Details are provided in this chapter. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017-12-20 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:30:11Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:30:11Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/artificial-neural-networks-anns-for-spectral-interference-correction-using-a-large-size-spectrometer |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16802 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.71039 |
url |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/artificial-neural-networks-anns-for-spectral-interference-correction-using-a-large-size-spectrometer http://hdl.handle.net/20.500.12010/16802 |
identifier_str_mv |
10.5772/intechopen.71039 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Z. Li, X. Zhang, GA Mohua y Vassili Karanassios (20 de diciembre de 2017). Redes neuronales artificiales (ANN) para la corrección de interferencias espectrales utilizando un espectrómetro de gran tamaño y aprendizaje profundo basado en ANN para uno en miniatura, Aplicaciones avanzadas para redes neuronales artificiales, Adel El-Shahat, IntechOpen, DOI: 10.5772 / intechopen.71039. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
25 páginas |
dc.format.mimetype.spa.fl_str_mv |
text/html |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/1/Artificial%20Neural%20Networks%20%28ANNs%29%20for%20Spectral_75.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/3/Artificial%20Neural%20Networks%20%28ANNs%29%20for%20Spectral_75.pdf.jpg |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f 933ed3d6363a9d40955e0c000cfb933b f94e49470bc040d7eddeeca6b23f4786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1818152785159389184 |
spelling |
2021-01-20T20:30:11Z2021-01-20T20:30:11Z2017-12-20https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/artificial-neural-networks-anns-for-spectral-interference-correction-using-a-large-size-spectrometerhttp://hdl.handle.net/20.500.12010/1680210.5772/intechopen.7103925 páginastext/htmlengIntechOpenBiologíaRedes neuronales artificialesInteligencia artificial -- RobóticaEspectrometría de emisión óptica portátilArtificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature OneAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Z. Li, X. Zhang, GA Mohua y Vassili Karanassios (20 de diciembre de 2017). Redes neuronales artificiales (ANN) para la corrección de interferencias espectrales utilizando un espectrómetro de gran tamaño y aprendizaje profundo basado en ANN para uno en miniatura, Aplicaciones avanzadas para redes neuronales artificiales, Adel El-Shahat, IntechOpen, DOI: 10.5772 / intechopen.71039.Artificial neural networks (ANNs) are evaluated for spectral interference correction using simulated and experimentally obtained spectral scans. Using the same data set (where possible), the predictive ability of shallow depth ANNs was validated against partial least squares (PLS, a traditional chemometrics method). Spectral interference (in the form of overlaps between spectral lines) is a key problem in large-size, long focal length inductively coupled plasma-optical emission spectrometry (ICP-OES). Unless corrected, spectral interference can be sufficiently severe to the point of preventing precise and accurate analytical determinations. In miniaturized, microplasma-based optical emission spectrometry with a portable, short focal length spectrometer (having poorer resolution than its large-size counterpart), spectral interference becomes even more severe. To correct it, we are evaluating use of deep learning ANNs. Details are provided in this chapter.http://purl.org/coar/resource_type/c_2f33Mohua, G. A.Zhang, Z. Li, X.Karanassios, VassiliLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessORIGINALArtificial Neural Networks (ANNs) for Spectral_75.pdfArtificial Neural Networks (ANNs) for Spectral_75.pdfVer documentoapplication/pdf7424243https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/1/Artificial%20Neural%20Networks%20%28ANNs%29%20for%20Spectral_75.pdf933ed3d6363a9d40955e0c000cfb933bMD51open accessTHUMBNAILArtificial Neural Networks (ANNs) for Spectral_75.pdf.jpgArtificial Neural Networks (ANNs) for Spectral_75.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16802/3/Artificial%20Neural%20Networks%20%28ANNs%29%20for%20Spectral_75.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16802oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168022021-01-31 21:24:22.706open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |