Analysis and recognition of human actions with flow features and temporal models

This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained fro...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2014
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16791
Acceso en línea:
https://www.ksp.kit.edu/9783731502821
http://hdl.handle.net/20.500.12010/16791
Palabra clave:
Ciencias de la computación
Reconocimiento de voz
Video
Video analysis
Rights
License
Abierto (Texto Completo)
id UTADEO2_34e0cc1a50cbb0d3011da29b6f11861a
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16791
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Analysis and recognition of human actions with flow features and temporal models
title Analysis and recognition of human actions with flow features and temporal models
spellingShingle Analysis and recognition of human actions with flow features and temporal models
Ciencias de la computación
Reconocimiento de voz
Video
Video analysis
title_short Analysis and recognition of human actions with flow features and temporal models
title_full Analysis and recognition of human actions with flow features and temporal models
title_fullStr Analysis and recognition of human actions with flow features and temporal models
title_full_unstemmed Analysis and recognition of human actions with flow features and temporal models
title_sort Analysis and recognition of human actions with flow features and temporal models
dc.subject.spa.fl_str_mv Ciencias de la computación
topic Ciencias de la computación
Reconocimiento de voz
Video
Video analysis
dc.subject.lemb.spa.fl_str_mv Reconocimiento de voz
Video
Video analysis
description This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained from video data can be used to interpret the underlying structural information of actions and how higher level models allow an abstraction of different motion categories beyond simple classification.
publishDate 2014
dc.date.created.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2021-01-20T20:22:50Z
dc.date.available.none.fl_str_mv 2021-01-20T20:22:50Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-3-731-50282-1
dc.identifier.other.none.fl_str_mv https://www.ksp.kit.edu/9783731502821
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/16791
dc.identifier.doi.none.fl_str_mv 10.5445/KSP/1000043583
identifier_str_mv 978-3-731-50282-1
10.5445/KSP/1000043583
url https://www.ksp.kit.edu/9783731502821
http://hdl.handle.net/20.500.12010/16791
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 208 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv KIT Scientific Publishing
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/1/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/3/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf.jpg
bitstream.checksum.fl_str_mv abceeb1c943c50d3343516f9dbfc110f
30d956396654ecae1082c7bc966a5563
d7a4f6281d508d653cabf7a80a44465b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213743134900224
spelling 2021-01-20T20:22:50Z2021-01-20T20:22:50Z2014978-3-731-50282-1https://www.ksp.kit.edu/9783731502821http://hdl.handle.net/20.500.12010/1679110.5445/KSP/1000043583208 páginasapplication/pdfengKIT Scientific PublishingCiencias de la computaciónReconocimiento de vozVideoVideo analysisAnalysis and recognition of human actions with flow features and temporal modelsAbierto (Texto Completo)https://creativecommons.org/licenses/by-sa/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained from video data can be used to interpret the underlying structural information of actions and how higher level models allow an abstraction of different motion categories beyond simple classification.http://purl.org/coar/resource_type/c_2f33Hildegard, KühneLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessORIGINALAnalysis and recognition of human actions with flow features and temporal models_64.pdfAnalysis and recognition of human actions with flow features and temporal models_64.pdfapplication/pdf11203869https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/1/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf30d956396654ecae1082c7bc966a5563MD51open accessTHUMBNAILAnalysis and recognition of human actions with flow features and temporal models_64.pdf.jpgAnalysis and recognition of human actions with flow features and temporal models_64.pdf.jpgIM Thumbnailimage/jpeg15940https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/3/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf.jpgd7a4f6281d508d653cabf7a80a44465bMD53open access20.500.12010/16791oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/167912021-01-31 18:59:19.753open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==