Analysis and recognition of human actions with flow features and temporal models
This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained fro...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16791
- Palabra clave:
- Ciencias de la computación
Reconocimiento de voz
Video
Video analysis
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_34e0cc1a50cbb0d3011da29b6f11861a |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16791 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis and recognition of human actions with flow features and temporal models |
title |
Analysis and recognition of human actions with flow features and temporal models |
spellingShingle |
Analysis and recognition of human actions with flow features and temporal models Ciencias de la computación Reconocimiento de voz Video Video analysis |
title_short |
Analysis and recognition of human actions with flow features and temporal models |
title_full |
Analysis and recognition of human actions with flow features and temporal models |
title_fullStr |
Analysis and recognition of human actions with flow features and temporal models |
title_full_unstemmed |
Analysis and recognition of human actions with flow features and temporal models |
title_sort |
Analysis and recognition of human actions with flow features and temporal models |
dc.subject.spa.fl_str_mv |
Ciencias de la computación |
topic |
Ciencias de la computación Reconocimiento de voz Video Video analysis |
dc.subject.lemb.spa.fl_str_mv |
Reconocimiento de voz Video Video analysis |
description |
This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained from video data can be used to interpret the underlying structural information of actions and how higher level models allow an abstraction of different motion categories beyond simple classification. |
publishDate |
2014 |
dc.date.created.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:22:50Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:22:50Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.isbn.none.fl_str_mv |
978-3-731-50282-1 |
dc.identifier.other.none.fl_str_mv |
https://www.ksp.kit.edu/9783731502821 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16791 |
dc.identifier.doi.none.fl_str_mv |
10.5445/KSP/1000043583 |
identifier_str_mv |
978-3-731-50282-1 10.5445/KSP/1000043583 |
url |
https://www.ksp.kit.edu/9783731502821 http://hdl.handle.net/20.500.12010/16791 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-sa/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
208 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
KIT Scientific Publishing |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/1/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/3/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf.jpg |
bitstream.checksum.fl_str_mv |
abceeb1c943c50d3343516f9dbfc110f 30d956396654ecae1082c7bc966a5563 d7a4f6281d508d653cabf7a80a44465b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213743134900224 |
spelling |
2021-01-20T20:22:50Z2021-01-20T20:22:50Z2014978-3-731-50282-1https://www.ksp.kit.edu/9783731502821http://hdl.handle.net/20.500.12010/1679110.5445/KSP/1000043583208 páginasapplication/pdfengKIT Scientific PublishingCiencias de la computaciónReconocimiento de vozVideoVideo analysisAnalysis and recognition of human actions with flow features and temporal modelsAbierto (Texto Completo)https://creativecommons.org/licenses/by-sa/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2This work focuses the recognition of complex human activities in video data. A combination of new features and techniques from speech recognition is used to realize a recognition of action units and their combinations in video sequences. The presented approach shows how motion information gained from video data can be used to interpret the underlying structural information of actions and how higher level models allow an abstraction of different motion categories beyond simple classification.http://purl.org/coar/resource_type/c_2f33Hildegard, KühneLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessORIGINALAnalysis and recognition of human actions with flow features and temporal models_64.pdfAnalysis and recognition of human actions with flow features and temporal models_64.pdfapplication/pdf11203869https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/1/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf30d956396654ecae1082c7bc966a5563MD51open accessTHUMBNAILAnalysis and recognition of human actions with flow features and temporal models_64.pdf.jpgAnalysis and recognition of human actions with flow features and temporal models_64.pdf.jpgIM Thumbnailimage/jpeg15940https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16791/3/Analysis%20and%20recognition%20of%20human%20actions%20with%20flow%20features%20and%20temporal%20models_64.pdf.jpgd7a4f6281d508d653cabf7a80a44465bMD53open access20.500.12010/16791oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/167912021-01-31 18:59:19.753open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |