Electricity Consumption and Generation Forecasting with Artificial Neural Networks
Nowadays, smart meters, sensors and advanced electricity tariff mechanisms such as time-of-use tariff (ToUT), critical peak pricing tariff and real time tariff enable the electricity consumption optimization for residential consumers. Therefore, consumers will play an active role by shifting their p...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16829
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/electricity-consumption-and-generation-forecasting-with-artificial-neural-networks
http://hdl.handle.net/20.500.12010/16829
- Palabra clave:
- Ingeniería
Redes neuronales artificiales
Energía renovable
Medidores inteligentes
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_32afeb968e8a1af76dfb31ce71346aa9 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16829 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
title |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
spellingShingle |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks Ingeniería Redes neuronales artificiales Energía renovable Medidores inteligentes |
title_short |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
title_full |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
title_fullStr |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
title_full_unstemmed |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
title_sort |
Electricity Consumption and Generation Forecasting with Artificial Neural Networks |
dc.subject.spa.fl_str_mv |
Ingeniería |
topic |
Ingeniería Redes neuronales artificiales Energía renovable Medidores inteligentes |
dc.subject.lemb.spa.fl_str_mv |
Redes neuronales artificiales Energía renovable Medidores inteligentes |
description |
Nowadays, smart meters, sensors and advanced electricity tariff mechanisms such as time-of-use tariff (ToUT), critical peak pricing tariff and real time tariff enable the electricity consumption optimization for residential consumers. Therefore, consumers will play an active role by shifting their peak consumption and change dynamically their behavior by scheduling home appliances, invest in small generation or storage devices (such as small wind turbines, photovoltaic (PV) panels and electrical vehicles). Thus, the current load profile curves for household consumers will become obsolete and electricity suppliers will require dynamical load profiles calculation and new advanced methods for consumption forecast. In this chapter, we aim to present some developments of artificial neural networks for energy demand side management system that determines consumers’ profiles and patterns, consumption forecasting and also small generation estimations |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017-12-20 |
dc.date.accessioned.none.fl_str_mv |
2021-01-21T18:01:26Z |
dc.date.available.none.fl_str_mv |
2021-01-21T18:01:26Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/electricity-consumption-and-generation-forecasting-with-artificial-neural-networks |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16829 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.71239 |
url |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/electricity-consumption-and-generation-forecasting-with-artificial-neural-networks http://hdl.handle.net/20.500.12010/16829 |
identifier_str_mv |
10.5772/intechopen.71239 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Adela Bâra and Simona Vasilica Oprea (December 20th 2017). Electricity Consumption and Generation Forecasting with Artificial Neural Networks, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71239. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
23 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/1/Electricity%20Consumption%20and%20Generation%20Forecasting_80.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/3/Electricity%20Consumption%20and%20Generation%20Forecasting_80.pdf.jpg https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/2/license.txt |
bitstream.checksum.fl_str_mv |
83c2f26b8fb0867df206d1c8fe64d794 f94e49470bc040d7eddeeca6b23f4786 abceeb1c943c50d3343516f9dbfc110f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213721955762176 |
spelling |
2021-01-21T18:01:26Z2021-01-21T18:01:26Z2017-12-20https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/electricity-consumption-and-generation-forecasting-with-artificial-neural-networkshttp://hdl.handle.net/20.500.12010/1682910.5772/intechopen.7123923 páginasapplication/pdfengIntechOpenIngenieríaRedes neuronales artificialesEnergía renovableMedidores inteligentesElectricity Consumption and Generation Forecasting with Artificial Neural NetworksAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Adela Bâra and Simona Vasilica Oprea (December 20th 2017). Electricity Consumption and Generation Forecasting with Artificial Neural Networks, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71239.Nowadays, smart meters, sensors and advanced electricity tariff mechanisms such as time-of-use tariff (ToUT), critical peak pricing tariff and real time tariff enable the electricity consumption optimization for residential consumers. Therefore, consumers will play an active role by shifting their peak consumption and change dynamically their behavior by scheduling home appliances, invest in small generation or storage devices (such as small wind turbines, photovoltaic (PV) panels and electrical vehicles). Thus, the current load profile curves for household consumers will become obsolete and electricity suppliers will require dynamical load profiles calculation and new advanced methods for consumption forecast. In this chapter, we aim to present some developments of artificial neural networks for energy demand side management system that determines consumers’ profiles and patterns, consumption forecasting and also small generation estimationshttp://purl.org/coar/resource_type/c_2f33Bâra, AdelaVasilica Oprea, SimonaORIGINALElectricity Consumption and Generation Forecasting_80.pdfElectricity Consumption and Generation Forecasting_80.pdfVer documentoapplication/pdf1313280https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/1/Electricity%20Consumption%20and%20Generation%20Forecasting_80.pdf83c2f26b8fb0867df206d1c8fe64d794MD51open accessTHUMBNAILElectricity Consumption and Generation Forecasting_80.pdf.jpgElectricity Consumption and Generation Forecasting_80.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/3/Electricity%20Consumption%20and%20Generation%20Forecasting_80.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16829/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open access20.500.12010/16829oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168292021-01-31 17:58:03.177open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |