COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review
Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, alm...
- Autores:
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12543
- Acceso en línea:
- https://doi.org/10.1016/j.compbiomed.2020.103960
http://hdl.handle.net/20.500.12010/12543
- Palabra clave:
- COVID-19
Comorbidity
Pathophysiology
Heart
Brain
Lung
Imaging
Artificial intelligence
Risk assessment
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
- Rights
- License
- Acceso restringido
id |
UTADEO2_2a663726eeffb1eec5d095ffb8371e6a |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12543 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
title |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
spellingShingle |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review COVID-19 Comorbidity Pathophysiology Heart Brain Lung Imaging Artificial intelligence Risk assessment Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
title_short |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
title_full |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
title_fullStr |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
title_full_unstemmed |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
title_sort |
COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review |
dc.subject.spa.fl_str_mv |
COVID-19 Comorbidity Pathophysiology Heart Brain Lung Imaging Artificial intelligence Risk assessment |
topic |
COVID-19 Comorbidity Pathophysiology Heart Brain Lung Imaging Artificial intelligence Risk assessment Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
dc.subject.lemb.spa.fl_str_mv |
Síndrome respiratorio agudo grave COVID-19 SARS-CoV-2 Coronavirus |
description |
Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients—specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis. We conclude that imaging and AI-based tissue characterization, when considered alongside COVID-19 symptoms and their pre-test probabilities, offer a compelling solution for assessing the risk of comorbid patients. These methods show the potential to become an integral part of tracking and improving the healthcare system, both during the pandemic and beyond. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-01T15:38:54Z |
dc.date.available.none.fl_str_mv |
2020-09-01T15:38:54Z |
dc.date.created.none.fl_str_mv |
2020 |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
0010-4825 |
dc.identifier.other.spa.fl_str_mv |
https://doi.org/10.1016/j.compbiomed.2020.103960 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/12543 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.compbiomed.2020.103960 |
identifier_str_mv |
0010-4825 |
url |
https://doi.org/10.1016/j.compbiomed.2020.103960 http://hdl.handle.net/20.500.12010/12543 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.local.spa.fl_str_mv |
Acceso restringido |
rights_invalid_str_mv |
Acceso restringido http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.spa.fl_str_mv |
41 páginas |
dc.format.mimetype.spa.fl_str_mv |
image/jepg |
dc.publisher.spa.fl_str_mv |
Computers in Biology and Medicine |
dc.source.spa.fl_str_mv |
reponame:Expeditio Repositorio Institucional UJTL instname:Universidad de Bogotá Jorge Tadeo Lozano |
instname_str |
Universidad de Bogotá Jorge Tadeo Lozano |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
reponame_str |
Expeditio Repositorio Institucional UJTL |
collection |
Expeditio Repositorio Institucional UJTL |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/1/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/3/COVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/4/Captura.PNG https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/5/COVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf.jpg |
bitstream.checksum.fl_str_mv |
5afdb84f2318d0aeab4543644343639f 1eb5d7112c5dd4cca4e0b91757c9109d abceeb1c943c50d3343516f9dbfc110f 5afdb84f2318d0aeab4543644343639f a9c68d5962e2e2b575ea5dcbe934439d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1818152591203237888 |
spelling |
2020-09-01T15:38:54Z2020-09-01T15:38:54Z20200010-4825https://doi.org/10.1016/j.compbiomed.2020.103960http://hdl.handle.net/20.500.12010/12543https://doi.org/10.1016/j.compbiomed.2020.103960Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients—specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis. We conclude that imaging and AI-based tissue characterization, when considered alongside COVID-19 symptoms and their pre-test probabilities, offer a compelling solution for assessing the risk of comorbid patients. These methods show the potential to become an integral part of tracking and improving the healthcare system, both during the pandemic and beyond.41 páginasimage/jepgengComputers in Biology and Medicinereponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoCOVID-19ComorbidityPathophysiologyHeartBrainLungImagingArtificial intelligenceRisk assessmentSíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusCOVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A reviewArtículohttp://purl.org/coar/resource_type/c_2df8fbb1Acceso restringidohttp://purl.org/coar/access_right/c_f1cfSuri, Jasjit S.Puvvula, AnudeepBiswas, MainakMajhail, MishaSaba, LucaFaa, GavinoSingh, Inder M.Oberleitner, RonaldTurk, MonikaChadha, Paramjit S.Johri, Amer M.Sanches, J. MiguelKhanna, Narendra N.Viskovic, KlaudijaMavrogeni, SophieLaird, John R.Pareek, GyanMiner, MartinSobel, David W.Balestrieri, AntonellaSfikakis, Petros P.Tsoulfas, GeorgeProtogerou, AthanasiosPrasanna Misra, DurgaAgarwal, VikasKitas, George D.Ahluwalia, PuneetKolluri, RaghuTeji, JagjitAl Maini, MustafaAgbakoba, AnnDhanjil, Surinder K.Sockalingam, MeyypanSaxena, AjitNicolaides, AndrewSharma, AdityaRathore, VijayAjuluchukwu, Janet N.A.Fatemi, MostafaAlizad, AzraViswanathan, VijayKrishnan, P.K.Naidu, SubbaramORIGINALCaptura.PNGCaptura.PNGVer portadaimage/png119680https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/1/Captura.PNG5afdb84f2318d0aeab4543644343639fMD51open accessCOVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdfCOVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdfArtículo reservadoapplication/pdf3304684https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/3/COVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf1eb5d7112c5dd4cca4e0b91757c9109dMD53embargoed access|||2200-09-01LICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCaptura.PNGCaptura.PNGPortadaimage/png119680https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/4/Captura.PNG5afdb84f2318d0aeab4543644343639fMD54open accessCOVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf.jpgCOVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf.jpgIM Thumbnailimage/jpeg13516https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12543/5/COVID-19-pathways-for-brain-and-heart-injury-in-comorbidity_2020_Computers-i.pdf.jpga9c68d5962e2e2b575ea5dcbe934439dMD55open access20.500.12010/12543oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/125432020-09-01 10:38:55.155open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |