Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model
Numerical weather prediction (NWP) uses atmospheric general circulation models (AGCMs) to predict weather based on current weather conditions. The process of entering observation data into mathematical model to generate the accurate initial conditions is called data assimilation (DA). It combines ob...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16800
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/data-assimilation-by-artificial-neural-networks-for-an-atmospheric-general-circulation-model
http://hdl.handle.net/20.500.12010/16800
- Palabra clave:
- Redes neuronales artificiales
Predicción meteorológica
Campos meteorológicos
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_1d42195623a95d8002c628200c88125e |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16800 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
title |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
spellingShingle |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model Redes neuronales artificiales Predicción meteorológica Campos meteorológicos |
title_short |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
title_full |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
title_fullStr |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
title_full_unstemmed |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
title_sort |
Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model |
dc.subject.spa.fl_str_mv |
Redes neuronales artificiales |
topic |
Redes neuronales artificiales Predicción meteorológica Campos meteorológicos |
dc.subject.lemb.spa.fl_str_mv |
Predicción meteorológica Campos meteorológicos |
description |
Numerical weather prediction (NWP) uses atmospheric general circulation models (AGCMs) to predict weather based on current weather conditions. The process of entering observation data into mathematical model to generate the accurate initial conditions is called data assimilation (DA). It combines observations, forecasting, and filtering step. This paper presents an approach for employing artificial neural networks (NNs) to emulate the local ensemble transform Kalman filter (LETKF) as a method of data assimilation. This assimilation experiment tests the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localizations of meteorological balloons. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLPs) networks are applied. After the training process, the method, forehead-calling MLP-DA, is seen as a function of data assimilation. The NNs were trained with data from first 3 months of 1982, 1983, and 1984. The experiment is performed for January 1985, one data assimilation cycle using MLP-DA with synthetic observations. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses are of order 10–2. The simulations show that the major advantage of using the MLP-DA is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-DA analyses is 90 times faster than LETKF cycle assimilation with the mean analyses used to run the forecast experiment. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018-02-28 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T20:29:13Z |
dc.date.available.none.fl_str_mv |
2021-01-20T20:29:13Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/data-assimilation-by-artificial-neural-networks-for-an-atmospheric-general-circulation-model |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16800 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.70791 |
url |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/data-assimilation-by-artificial-neural-networks-for-an-atmospheric-general-circulation-model http://hdl.handle.net/20.500.12010/16800 |
identifier_str_mv |
10.5772/intechopen.70791 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Rosangela Saher Cintra and Haroldo F. de Campos Velho (February 28th 2018). Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70791. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
23 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/1/Data%20Assimilation%20by%20Artificial%20Neural%20Networks%20for%20an_73.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/3/Data%20Assimilation%20by%20Artificial%20Neural%20Networks%20for%20an_73.pdf.jpg |
bitstream.checksum.fl_str_mv |
4b7d65abfb91c38199f54b62c61e4cce abceeb1c943c50d3343516f9dbfc110f f94e49470bc040d7eddeeca6b23f4786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213611197825024 |
spelling |
2021-01-20T20:29:13Z2021-01-20T20:29:13Z2018-02-28https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/data-assimilation-by-artificial-neural-networks-for-an-atmospheric-general-circulation-modelhttp://hdl.handle.net/20.500.12010/1680010.5772/intechopen.7079123 páginasapplication/pdfengIntechOpenRedes neuronales artificialesPredicción meteorológicaCampos meteorológicosData Assimilation by Artificial Neural Networks for an Atmospheric General Circulation ModelAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Rosangela Saher Cintra and Haroldo F. de Campos Velho (February 28th 2018). Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.70791.Numerical weather prediction (NWP) uses atmospheric general circulation models (AGCMs) to predict weather based on current weather conditions. The process of entering observation data into mathematical model to generate the accurate initial conditions is called data assimilation (DA). It combines observations, forecasting, and filtering step. This paper presents an approach for employing artificial neural networks (NNs) to emulate the local ensemble transform Kalman filter (LETKF) as a method of data assimilation. This assimilation experiment tests the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localizations of meteorological balloons. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLPs) networks are applied. After the training process, the method, forehead-calling MLP-DA, is seen as a function of data assimilation. The NNs were trained with data from first 3 months of 1982, 1983, and 1984. The experiment is performed for January 1985, one data assimilation cycle using MLP-DA with synthetic observations. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses are of order 10–2. The simulations show that the major advantage of using the MLP-DA is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-DA analyses is 90 times faster than LETKF cycle assimilation with the mean analyses used to run the forecast experiment.http://purl.org/coar/resource_type/c_2f33Saher Cintra, RosangelaDe Campos Velho, Haroldo F.ORIGINALData Assimilation by Artificial Neural Networks for an_73.pdfData Assimilation by Artificial Neural Networks for an_73.pdfVer documentoapplication/pdf4033292https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/1/Data%20Assimilation%20by%20Artificial%20Neural%20Networks%20for%20an_73.pdf4b7d65abfb91c38199f54b62c61e4cceMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILData Assimilation by Artificial Neural Networks for an_73.pdf.jpgData Assimilation by Artificial Neural Networks for an_73.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16800/3/Data%20Assimilation%20by%20Artificial%20Neural%20Networks%20for%20an_73.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16800oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168002021-01-31 21:19:46.665open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |