Forecasting credit card attrition using machine learning models

Este trabajo tiene como objetivo el estudio, aplicación e implementación de modelos Machine Learning para identificar qué clientes desean cancelar alguna de sus tarjetas de crédito. La industria bancaria utiliza esta tecnología con el fin de obtener predicciones más fiables a la hora de identificar...

Full description

Autores:
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/13883
Acceso en línea:
http://hdl.handle.net/20.500.12010/13883
http://expeditio.utadeo.edu.co
Palabra clave:
Aprendizaje Supervisado
Regresión Logística
Aprendizaje
Aprendizaje
Logística empresarial
Procesamiento de datos
Machine Learning
Attrition
Rights
License
Abierto (Texto Completo)
Description
Summary:Este trabajo tiene como objetivo el estudio, aplicación e implementación de modelos Machine Learning para identificar qué clientes desean cancelar alguna de sus tarjetas de crédito. La industria bancaria utiliza esta tecnología con el fin de obtener predicciones más fiables a la hora de identificar oportunidades de compra, inversión o fraude. Estos modelos se pueden adaptar de forma independiente, por medio del reconocimiento de patrones y algoritmos basados en cálculos matemáticos. Para desarrollar la investigación se implementaron y evaluaron cuatro modelos (LightGBM, XGBoost, Random Forest y Logistic Regression) con el fin de predecir a través de los datos del cliente y sus productos la posibilidad de que cancele sus tarjetas de crédito. Mediante una análisis de la curvas ROC usando las métricas AUC, se llegó a la conclusión que de los modelos seleccionados, el modelo elegido para realizar la predicción fue LightGBM, ya que fue el que tuvo mejor desempeño en los experimentos realizados. De igual forma, se encontró que la variable Score Acierta, una calificación del cliente proveída por la central de riesgos, es la que más discrimina en los modelos predicción.