Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the A...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16834
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-
http://hdl.handle.net/20.500.12010/16834
- Palabra clave:
- Ingeniería de software
Red neuronal artificial
Modelo de factor dinámico
Modelo de red neuronal artificial con factor aumentado
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_1629c08348d87d85478ba8d2fae9b0a0 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16834 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
title |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
spellingShingle |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? Ingeniería de software Red neuronal artificial Modelo de factor dinámico Modelo de red neuronal artificial con factor aumentado |
title_short |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
title_full |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
title_fullStr |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
title_full_unstemmed |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
title_sort |
Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models? |
dc.subject.spa.fl_str_mv |
Ingeniería de software |
topic |
Ingeniería de software Red neuronal artificial Modelo de factor dinámico Modelo de red neuronal artificial con factor aumentado |
dc.subject.lemb.spa.fl_str_mv |
Red neuronal artificial Modelo de factor dinámico Modelo de red neuronal artificial con factor aumentado |
description |
In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the ANN model that produces the factor-augmented artificial neural network (FAANN). Linear and nonlinear forecasts combining methods are used to combine the DFM and the ANN forecasts. The results of the best combining method are compared to the forecasts result of the FAANN model. The models are applied to forecast three time series variables using large South African monthly data. The out-of-sample root-mean-square error (RMSE) results show that the FAANN model yields substantial improvement over the individual and best combined forecasts from the DFM and ANN forecasting models and the autoregressive AR benchmark model. Further, the Diebold-Mariano test results also confirm the superiority of the FAANN model forecast’s performance over the AR benchmark model and the combined forecasts. |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018-02-28 |
dc.date.accessioned.none.fl_str_mv |
2021-01-21T18:04:05Z |
dc.date.available.none.fl_str_mv |
2021-01-21T18:04:05Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models- |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16834 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.71536 |
url |
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models- http://hdl.handle.net/20.500.12010/16834 |
identifier_str_mv |
10.5772/intechopen.71536 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Ali Babikir, Mustafa Mohammed and Henry Mwambi (February 28th 2018). Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71536. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
21 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/1/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/3/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f118fdb580a24ccf096a67e76743bc0 abceeb1c943c50d3343516f9dbfc110f f94e49470bc040d7eddeeca6b23f4786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213452456001536 |
spelling |
2021-01-21T18:04:05Z2021-01-21T18:04:05Z2018-02-28https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-http://hdl.handle.net/20.500.12010/1683410.5772/intechopen.7153621 páginasapplication/pdfengIntechOpenIngeniería de softwareRed neuronal artificialModelo de factor dinámicoModelo de red neuronal artificial con factor aumentadoDynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?Abierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Ali Babikir, Mustafa Mohammed and Henry Mwambi (February 28th 2018). Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71536.In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the ANN model that produces the factor-augmented artificial neural network (FAANN). Linear and nonlinear forecasts combining methods are used to combine the DFM and the ANN forecasts. The results of the best combining method are compared to the forecasts result of the FAANN model. The models are applied to forecast three time series variables using large South African monthly data. The out-of-sample root-mean-square error (RMSE) results show that the FAANN model yields substantial improvement over the individual and best combined forecasts from the DFM and ANN forecasting models and the autoregressive AR benchmark model. Further, the Diebold-Mariano test results also confirm the superiority of the FAANN model forecast’s performance over the AR benchmark model and the combined forecasts.http://purl.org/coar/resource_type/c_2f33Babikir, AliMohammed, MustafaMwambi, HenryORIGINALDynamic Factor Model and Artificial Neural Network_85.pdfDynamic Factor Model and Artificial Neural Network_85.pdfVer documentoapplication/pdf934786https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/1/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf6f118fdb580a24ccf096a67e76743bc0MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILDynamic Factor Model and Artificial Neural Network_85.pdf.jpgDynamic Factor Model and Artificial Neural Network_85.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/3/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16834oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168342021-01-31 18:08:15.989open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |