Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?

In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the A...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2018
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16834
Acceso en línea:
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-
http://hdl.handle.net/20.500.12010/16834
Palabra clave:
Ingeniería de software
Red neuronal artificial
Modelo de factor dinámico
Modelo de red neuronal artificial con factor aumentado
Rights
License
Abierto (Texto Completo)
id UTADEO2_1629c08348d87d85478ba8d2fae9b0a0
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16834
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
title Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
spellingShingle Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
Ingeniería de software
Red neuronal artificial
Modelo de factor dinámico
Modelo de red neuronal artificial con factor aumentado
title_short Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
title_full Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
title_fullStr Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
title_full_unstemmed Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
title_sort Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?
dc.subject.spa.fl_str_mv Ingeniería de software
topic Ingeniería de software
Red neuronal artificial
Modelo de factor dinámico
Modelo de red neuronal artificial con factor aumentado
dc.subject.lemb.spa.fl_str_mv Red neuronal artificial
Modelo de factor dinámico
Modelo de red neuronal artificial con factor aumentado
description In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the ANN model that produces the factor-augmented artificial neural network (FAANN). Linear and nonlinear forecasts combining methods are used to combine the DFM and the ANN forecasts. The results of the best combining method are compared to the forecasts result of the FAANN model. The models are applied to forecast three time series variables using large South African monthly data. The out-of-sample root-mean-square error (RMSE) results show that the FAANN model yields substantial improvement over the individual and best combined forecasts from the DFM and ANN forecasting models and the autoregressive AR benchmark model. Further, the Diebold-Mariano test results also confirm the superiority of the FAANN model forecast’s performance over the AR benchmark model and the combined forecasts.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-02-28
dc.date.accessioned.none.fl_str_mv 2021-01-21T18:04:05Z
dc.date.available.none.fl_str_mv 2021-01-21T18:04:05Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.other.none.fl_str_mv https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/16834
dc.identifier.doi.none.fl_str_mv 10.5772/intechopen.71536
url https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-
http://hdl.handle.net/20.500.12010/16834
identifier_str_mv 10.5772/intechopen.71536
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ali Babikir, Mustafa Mohammed and Henry Mwambi (February 28th 2018). Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71536.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IntechOpen
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/1/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/3/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf.jpg
bitstream.checksum.fl_str_mv 6f118fdb580a24ccf096a67e76743bc0
abceeb1c943c50d3343516f9dbfc110f
f94e49470bc040d7eddeeca6b23f4786
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213452456001536
spelling 2021-01-21T18:04:05Z2021-01-21T18:04:05Z2018-02-28https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-http://hdl.handle.net/20.500.12010/1683410.5772/intechopen.7153621 páginasapplication/pdfengIntechOpenIngeniería de softwareRed neuronal artificialModelo de factor dinámicoModelo de red neuronal artificial con factor aumentadoDynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?Abierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Ali Babikir, Mustafa Mohammed and Henry Mwambi (February 28th 2018). Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71536.In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the ANN model that produces the factor-augmented artificial neural network (FAANN). Linear and nonlinear forecasts combining methods are used to combine the DFM and the ANN forecasts. The results of the best combining method are compared to the forecasts result of the FAANN model. The models are applied to forecast three time series variables using large South African monthly data. The out-of-sample root-mean-square error (RMSE) results show that the FAANN model yields substantial improvement over the individual and best combined forecasts from the DFM and ANN forecasting models and the autoregressive AR benchmark model. Further, the Diebold-Mariano test results also confirm the superiority of the FAANN model forecast’s performance over the AR benchmark model and the combined forecasts.http://purl.org/coar/resource_type/c_2f33Babikir, AliMohammed, MustafaMwambi, HenryORIGINALDynamic Factor Model and Artificial Neural Network_85.pdfDynamic Factor Model and Artificial Neural Network_85.pdfVer documentoapplication/pdf934786https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/1/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf6f118fdb580a24ccf096a67e76743bc0MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILDynamic Factor Model and Artificial Neural Network_85.pdf.jpgDynamic Factor Model and Artificial Neural Network_85.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16834/3/Dynamic%20Factor%20Model%20and%20Artificial%20Neural%20Network_85.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16834oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168342021-01-31 18:08:15.989open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==