Quantization on Nilpotent Lie Groups
The purpose of this monograph is to give an exposition of the global quantization of operators on nilpotent homogeneous Lie groups. We also present the background analysis on homogeneous and graded nilpotent Lie groups. The analysis on homo- geneous nilpotent Lie groups drew a considerable attention...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18736
- Acceso en línea:
- https://directory.doabooks.org/handle/20.500.12854/25946
http://hdl.handle.net/20.500.12010/18736
- Palabra clave:
- Topological Groups
Lie Groups
Abstract Harmonic Analysis
Matemáticas
Análisis combinatorio
Análisis matemático
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_158303dd3a3c9bd76636bafd79e05e9a |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/18736 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Quantization on Nilpotent Lie Groups |
title |
Quantization on Nilpotent Lie Groups |
spellingShingle |
Quantization on Nilpotent Lie Groups Topological Groups Lie Groups Abstract Harmonic Analysis Matemáticas Análisis combinatorio Análisis matemático |
title_short |
Quantization on Nilpotent Lie Groups |
title_full |
Quantization on Nilpotent Lie Groups |
title_fullStr |
Quantization on Nilpotent Lie Groups |
title_full_unstemmed |
Quantization on Nilpotent Lie Groups |
title_sort |
Quantization on Nilpotent Lie Groups |
dc.subject.spa.fl_str_mv |
Topological Groups Lie Groups Abstract Harmonic Analysis |
topic |
Topological Groups Lie Groups Abstract Harmonic Analysis Matemáticas Análisis combinatorio Análisis matemático |
dc.subject.lemb.spa.fl_str_mv |
Matemáticas Análisis combinatorio Análisis matemático |
description |
The purpose of this monograph is to give an exposition of the global quantization of operators on nilpotent homogeneous Lie groups. We also present the background analysis on homogeneous and graded nilpotent Lie groups. The analysis on homo- geneous nilpotent Lie groups drew a considerable attention from the 70’s onwards. Research went in several directions, most notably in harmonic analysis and in the study of hypoellipticity and solvability of partial differential equations. Over the decades the subject has been developing on different levels with advances in the analysis on the Heisenberg group, stratified Lie groups, graded Lie groups, and general homogeneous Lie groups. In the last years analysis on homogeneous Lie groups and also on other types of Lie groups has received another boost with newly found applications and further advances in many topics. Examples of this boost are subelliptic estimates, multi- plier theorems, index formulae, nonlinear problems, potential theory, and symbolic calculi tracing full symbols of operators. In particular, the latter has produced fur- ther applications in the study of linear and nonlinear partial differential equations, requiring the knowledge of lower order terms of the operators. |
publishDate |
2016 |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2021-04-15T17:31:17Z |
dc.date.available.none.fl_str_mv |
2021-04-15T17:31:17Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.isbn.none.fl_str_mv |
9789400775961 |
dc.identifier.other.none.fl_str_mv |
https://directory.doabooks.org/handle/20.500.12854/25946 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/18736 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-29558-9 |
identifier_str_mv |
9789400775961 10.1007/978-3-319-29558-9 |
url |
https://directory.doabooks.org/handle/20.500.12854/25946 http://hdl.handle.net/20.500.12010/18736 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
557 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Nature |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/1/1002028.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/3/1002028.pdf.jpg https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/2/license.txt |
bitstream.checksum.fl_str_mv |
112c4cc4cb9072c3d08eb652554de614 d733786db5c55e8e257ab5989c3907f5 baba314677a6b940f072575a13bb6906 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1818152573610229760 |
spelling |
2021-04-15T17:31:17Z2021-04-15T17:31:17Z20169789400775961https://directory.doabooks.org/handle/20.500.12854/25946http://hdl.handle.net/20.500.12010/1873610.1007/978-3-319-29558-9The purpose of this monograph is to give an exposition of the global quantization of operators on nilpotent homogeneous Lie groups. We also present the background analysis on homogeneous and graded nilpotent Lie groups. The analysis on homo- geneous nilpotent Lie groups drew a considerable attention from the 70’s onwards. Research went in several directions, most notably in harmonic analysis and in the study of hypoellipticity and solvability of partial differential equations. Over the decades the subject has been developing on different levels with advances in the analysis on the Heisenberg group, stratified Lie groups, graded Lie groups, and general homogeneous Lie groups. In the last years analysis on homogeneous Lie groups and also on other types of Lie groups has received another boost with newly found applications and further advances in many topics. Examples of this boost are subelliptic estimates, multi- plier theorems, index formulae, nonlinear problems, potential theory, and symbolic calculi tracing full symbols of operators. In particular, the latter has produced fur- ther applications in the study of linear and nonlinear partial differential equations, requiring the knowledge of lower order terms of the operators.557 páginasapplication/pdfengSpringer NatureTopological GroupsLie GroupsAbstract Harmonic AnalysisMatemáticasAnálisis combinatorioAnálisis matemáticoQuantization on Nilpotent Lie GroupsAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2http://purl.org/coar/resource_type/c_2f33Fischer, VeroniqueRuzhansky, MichaelORIGINAL1002028.pdf1002028.pdfVer documentoapplication/pdf5429010https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/1/1002028.pdf112c4cc4cb9072c3d08eb652554de614MD51open accessTHUMBNAIL1002028.pdf.jpg1002028.pdf.jpgIM Thumbnailimage/jpeg13632https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/3/1002028.pdf.jpgd733786db5c55e8e257ab5989c3907f5MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/18736/2/license.txtbaba314677a6b940f072575a13bb6906MD52open access20.500.12010/18736oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/187362021-04-15 23:00:35.917open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhCnF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlCnRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbApFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5CmV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8KcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYQpjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwKZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzCjQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8KY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYQpkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZQp0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYQpsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UKZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvcgpjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQKZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEKVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlCmxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMKZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcwpkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24KaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFECkRFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyCm8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwKZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhCkxleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zClBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsCmFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hCmNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcwpwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkKcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUKRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjoKaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |