Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers
In this work, we discuss the numerical solution of the Taylor vortex and the lid-driven cavity problems. Both problems are solved using the Stream function-vorticity formula- tion of the Navier-Stokes equations in 2D. Results are obtained using a fixed point iterative method and working with matrixe...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16715
- Acceso en línea:
- https://www.intechopen.com/books/computational-fluid-dynamics-basic-instruments-and-applications-in-science/two-different-formulations-for-solving-the-navier-stokes-equations-with-moderate-and-high-reynolds-n
http://hdl.handle.net/20.500.12010/16715
- Palabra clave:
- Ecuaciones de Navier - Stokes
Formulación de velocidad vorticidad
Número de Reynolds
Formulación de función de flujo vorticidad
- Rights
- License
- Abierto (Texto Completo)
id |
UTADEO2_11014d4e7b95f9fdc375741cfe0d08d2 |
---|---|
oai_identifier_str |
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16715 |
network_acronym_str |
UTADEO2 |
network_name_str |
Expeditio: repositorio UTadeo |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
title |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
spellingShingle |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers Ecuaciones de Navier - Stokes Formulación de velocidad vorticidad Número de Reynolds Formulación de función de flujo vorticidad |
title_short |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
title_full |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
title_fullStr |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
title_full_unstemmed |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
title_sort |
Two Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds Numbers |
dc.subject.spa.fl_str_mv |
Ecuaciones de Navier - Stokes |
topic |
Ecuaciones de Navier - Stokes Formulación de velocidad vorticidad Número de Reynolds Formulación de función de flujo vorticidad |
dc.subject.lemb.spa.fl_str_mv |
Formulación de velocidad vorticidad Número de Reynolds Formulación de función de flujo vorticidad |
description |
In this work, we discuss the numerical solution of the Taylor vortex and the lid-driven cavity problems. Both problems are solved using the Stream function-vorticity formula- tion of the Navier-Stokes equations in 2D. Results are obtained using a fixed point iterative method and working with matrixes A and B resulting from the discretization of the Laplacian and the advective term, respectively. We solved both problems with Reynolds numbers in the range of 3200 ≤ Re ≤ 7500. Results are also obtained using the velocity-vorticity formulation of the Navier-Stokes equations. In this case, we are using only the fixed point iterative method. We present results for the lid-driven cavity prob- lem and for the Stream function-vorticity formulation with Reynolds numbers in the range of 3200 ≤ Re ≤ 7500. As the Reynolds number increases, the time and the space step size have to be refined. We show results for 3200 ≤ Re ≤ 20,000. The numerical scheme with the velocity-vorticity formulation uses a smaller step size for both time and space. Results are not as good as with the Stream function-vorticity formulation, although the way the scheme behaves gives us another point of view on the behavior of fluids under different numerical schemes and different formulation. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-18T21:06:21Z |
dc.date.available.none.fl_str_mv |
2021-01-18T21:06:21Z |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.other.none.fl_str_mv |
https://www.intechopen.com/books/computational-fluid-dynamics-basic-instruments-and-applications-in-science/two-different-formulations-for-solving-the-navier-stokes-equations-with-moderate-and-high-reynolds-n |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12010/16715 |
dc.identifier.doi.none.fl_str_mv |
10.5772/intechopen.71921 |
url |
https://www.intechopen.com/books/computational-fluid-dynamics-basic-instruments-and-applications-in-science/two-different-formulations-for-solving-the-navier-stokes-equations-with-moderate-and-high-reynolds-n http://hdl.handle.net/20.500.12010/16715 |
identifier_str_mv |
10.5772/intechopen.71921 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Blanca Bermúdez, Alejandro Rangel-Huerta, Wuiyevaldo Fermín Guerrero-Sánchez and José David Alanís (December 20th 2017). Two Different Formulations for Solving the Navier-Stokes Equations with Moderate and High Reynolds Numbers, Computational Fluid Dynamics - Basic Instruments and Applications in Science, Adela Ionescu, IntechOpen, DOI: 10.5772/intechopen.71921. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/legalcode |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc/4.0/legalcode http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IntechOpen |
institution |
Universidad de Bogotá Jorge Tadeo Lozano |
bitstream.url.fl_str_mv |
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/1/Two%20Different%20Formulations%20for%20Solving%20the%20Navier_19.pdf https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/2/license.txt https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/3/Two%20Different%20Formulations%20for%20Solving%20the%20Navier_19.pdf.jpg |
bitstream.checksum.fl_str_mv |
6c783da36df25ac6ee3e1eeb908d0f4c abceeb1c943c50d3343516f9dbfc110f f94e49470bc040d7eddeeca6b23f4786 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Universidad Jorge Tadeo Lozano |
repository.mail.fl_str_mv |
expeditio@utadeo.edu.co |
_version_ |
1814213841781784576 |
spelling |
2021-01-18T21:06:21Z2021-01-18T21:06:21Zhttps://www.intechopen.com/books/computational-fluid-dynamics-basic-instruments-and-applications-in-science/two-different-formulations-for-solving-the-navier-stokes-equations-with-moderate-and-high-reynolds-nhttp://hdl.handle.net/20.500.12010/1671510.5772/intechopen.7192115 páginasapplication/pdfengIntechOpenEcuaciones de Navier - StokesFormulación de velocidad vorticidadNúmero de ReynoldsFormulación de función de flujo vorticidadTwo Different Formulations for Solving the Navier- Stokes Equations with Moderate and High Reynolds NumbersAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Blanca Bermúdez, Alejandro Rangel-Huerta, Wuiyevaldo Fermín Guerrero-Sánchez and José David Alanís (December 20th 2017). Two Different Formulations for Solving the Navier-Stokes Equations with Moderate and High Reynolds Numbers, Computational Fluid Dynamics - Basic Instruments and Applications in Science, Adela Ionescu, IntechOpen, DOI: 10.5772/intechopen.71921.In this work, we discuss the numerical solution of the Taylor vortex and the lid-driven cavity problems. Both problems are solved using the Stream function-vorticity formula- tion of the Navier-Stokes equations in 2D. Results are obtained using a fixed point iterative method and working with matrixes A and B resulting from the discretization of the Laplacian and the advective term, respectively. We solved both problems with Reynolds numbers in the range of 3200 ≤ Re ≤ 7500. Results are also obtained using the velocity-vorticity formulation of the Navier-Stokes equations. In this case, we are using only the fixed point iterative method. We present results for the lid-driven cavity prob- lem and for the Stream function-vorticity formulation with Reynolds numbers in the range of 3200 ≤ Re ≤ 7500. As the Reynolds number increases, the time and the space step size have to be refined. We show results for 3200 ≤ Re ≤ 20,000. The numerical scheme with the velocity-vorticity formulation uses a smaller step size for both time and space. Results are not as good as with the Stream function-vorticity formulation, although the way the scheme behaves gives us another point of view on the behavior of fluids under different numerical schemes and different formulation.http://purl.org/coar/resource_type/c_2f33Bermúdez, BlancaHuerta, Alejandro RangelGuerrero Sánchez, Wuiyevaldo FermínAlanís, José DavidORIGINALTwo Different Formulations for Solving the Navier_19.pdfTwo Different Formulations for Solving the Navier_19.pdfVer documentoapplication/pdf1161938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/1/Two%20Different%20Formulations%20for%20Solving%20the%20Navier_19.pdf6c783da36df25ac6ee3e1eeb908d0f4cMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILTwo Different Formulations for Solving the Navier_19.pdf.jpgTwo Different Formulations for Solving the Navier_19.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16715/3/Two%20Different%20Formulations%20for%20Solving%20the%20Navier_19.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open access20.500.12010/16715oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/167152021-02-03 22:09:20.996open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg== |