Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology

The complexity of living organisms surpasses our unaided habilities of analysis. Hence, computational and mathematical methods are necessary for increasing our understanding of biological systems. At the same time, there has been a phenomenal recent progress allowing the application of novel formal...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2016
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14200
Acceso en línea:
https://www.frontiersin.org/research-topics/2177/computational-methods-for-understanding-complexity-the-use-of-formal-methods-in-biology
http://hdl.handle.net/20.500.12010/14200
Palabra clave:
General and civil engineering
Biotechnology
Science (General)
Genetics
Boolean networks
Gene Regulatory Networks
Model checking
Answer set programing
Biochemical networks
Attractors of Boolean networks
Logic programing
Synthesis of biochemical models
Rights
License
Abierto (Texto Completo)
id UTADEO2_0be93131a1c42388b1f91fa8dfec6d8f
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/14200
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
title Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
spellingShingle Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
General and civil engineering
Biotechnology
Science (General)
Genetics
Boolean networks
Gene Regulatory Networks
Model checking
Answer set programing
Biochemical networks
Attractors of Boolean networks
Logic programing
Synthesis of biochemical models
title_short Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
title_full Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
title_fullStr Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
title_full_unstemmed Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
title_sort Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology
dc.subject.spa.fl_str_mv General and civil engineering
Biotechnology
Science (General)
Genetics
topic General and civil engineering
Biotechnology
Science (General)
Genetics
Boolean networks
Gene Regulatory Networks
Model checking
Answer set programing
Biochemical networks
Attractors of Boolean networks
Logic programing
Synthesis of biochemical models
dc.subject.lemb.spa.fl_str_mv Boolean networks
Gene Regulatory Networks
Model checking
Answer set programing
dc.subject.keyword.spa.fl_str_mv Biochemical networks
Attractors of Boolean networks
Logic programing
Synthesis of biochemical models
description The complexity of living organisms surpasses our unaided habilities of analysis. Hence, computational and mathematical methods are necessary for increasing our understanding of biological systems. At the same time, there has been a phenomenal recent progress allowing the application of novel formal methods to new domains. This progress has spurred a conspicuous optimism in computational biology. This optimism, in turn, has promoted a rapid increase in collaboration between specialists of biology with specialists of computer science. Through sheer complexity, however, many important biological problems are at present intractable, and it is not clear whether we will ever be able to solve such problems. We are in the process of learning what kind of model and what kind of analysis and synthesis techniques to use for a particular problem. Some existing formalisms have been readily used in biological problems, others have been adapted to biological needs, and still others have been especially developed for biological systems. This Research Topic has examples of cases (1) employing existing methods, (2) adapting methods to biology, and (3) developing new methods. We can also see discrete and Boolean models, and the use of both simulators and model checkers. Synthesis is exemplified by manual and by machine-learning methods. We hope that the articles collected in this Research Topic will stimulate new research.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-10-05T16:29:59Z
dc.date.available.none.fl_str_mv 2020-10-05T16:29:59Z
dc.type.local.spa.fl_str_mv Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-2-88945-042-8
dc.identifier.issn.none.fl_str_mv 1664-8714
dc.identifier.other.none.fl_str_mv https://www.frontiersin.org/research-topics/2177/computational-methods-for-understanding-complexity-the-use-of-formal-methods-in-biology
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/14200
dc.identifier.doi.none.fl_str_mv 10.3389/978-2-88945-042-8
identifier_str_mv 978-2-88945-042-8
1664-8714
10.3389/978-2-88945-042-8
url https://www.frontiersin.org/research-topics/2177/computational-methods-for-understanding-complexity-the-use-of-formal-methods-in-biology
http://hdl.handle.net/20.500.12010/14200
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Rosenblueth, D. A., ed. (2016). Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-042-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 115 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media SA
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/1/COMPUTATIONAL%20METHODS%20FOR.PDF
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/2/license.txt
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/3/COMPUTATIONAL%20METHODS%20FOR.PDF.jpg
bitstream.checksum.fl_str_mv e9cbbd1ccf1affe3be1e2a50bb765675
abceeb1c943c50d3343516f9dbfc110f
99c91b5a6f08e062c828cfab77ffe384
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1818152971316232192
spelling 2020-10-05T16:29:59Z2020-10-05T16:29:59Z2016978-2-88945-042-81664-8714https://www.frontiersin.org/research-topics/2177/computational-methods-for-understanding-complexity-the-use-of-formal-methods-in-biologyhttp://hdl.handle.net/20.500.12010/1420010.3389/978-2-88945-042-8115 páginasapplication/pdfengFrontiers Media SAGeneral and civil engineeringBiotechnologyScience (General)GeneticsBoolean networksGene Regulatory NetworksModel checkingAnswer set programingBiochemical networksAttractors of Boolean networksLogic programingSynthesis of biochemical modelsComputational Methods for Understanding Complexity: The Use of Formal Methods in BiologyLibrohttp://purl.org/coar/resource_type/c_2f33Abierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Rosenblueth, D. A., ed. (2016). Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-042-8The complexity of living organisms surpasses our unaided habilities of analysis. Hence, computational and mathematical methods are necessary for increasing our understanding of biological systems. At the same time, there has been a phenomenal recent progress allowing the application of novel formal methods to new domains. This progress has spurred a conspicuous optimism in computational biology. This optimism, in turn, has promoted a rapid increase in collaboration between specialists of biology with specialists of computer science. Through sheer complexity, however, many important biological problems are at present intractable, and it is not clear whether we will ever be able to solve such problems. We are in the process of learning what kind of model and what kind of analysis and synthesis techniques to use for a particular problem. Some existing formalisms have been readily used in biological problems, others have been adapted to biological needs, and still others have been especially developed for biological systems. This Research Topic has examples of cases (1) employing existing methods, (2) adapting methods to biology, and (3) developing new methods. We can also see discrete and Boolean models, and the use of both simulators and model checkers. Synthesis is exemplified by manual and by machine-learning methods. We hope that the articles collected in this Research Topic will stimulate new research.Rosenblueth, David A.ORIGINALCOMPUTATIONAL METHODS FOR.PDFCOMPUTATIONAL METHODS FOR.PDFVer documentoapplication/pdf21775344https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/1/COMPUTATIONAL%20METHODS%20FOR.PDFe9cbbd1ccf1affe3be1e2a50bb765675MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open accessTHUMBNAILCOMPUTATIONAL METHODS FOR.PDF.jpgCOMPUTATIONAL METHODS FOR.PDF.jpgIM Thumbnailimage/jpeg30674https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/14200/3/COMPUTATIONAL%20METHODS%20FOR.PDF.jpg99c91b5a6f08e062c828cfab77ffe384MD53open access20.500.12010/14200oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/142002021-02-23 15:31:14.428open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==