The myth of generalisability in clinical research and machine learning in health care

Dr Lee, an esteemed intensivist from the USA, is rounding in an intensive care unit (ICU). He is asked by a team member who is taking care of patients with COVID-19 if they can triage their patients to optimise use of scarce resources, such as ventilators, with their hospital’s new machine learning...

Full description

Autores:
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12226
Acceso en línea:
https://doi.org/10.1016/S2589-7500(20)30186-2
http://hdl.handle.net/20.500.12010/12226
Palabra clave:
Clinical research
Health care
Generalisability
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
Rights
License
Abierto (Texto Completo)
id UTADEO2_05bfaff11b2d7d70490c069d3f9502f8
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/12226
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv The myth of generalisability in clinical research and machine learning in health care
title The myth of generalisability in clinical research and machine learning in health care
spellingShingle The myth of generalisability in clinical research and machine learning in health care
Clinical research
Health care
Generalisability
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
title_short The myth of generalisability in clinical research and machine learning in health care
title_full The myth of generalisability in clinical research and machine learning in health care
title_fullStr The myth of generalisability in clinical research and machine learning in health care
title_full_unstemmed The myth of generalisability in clinical research and machine learning in health care
title_sort The myth of generalisability in clinical research and machine learning in health care
dc.subject.spa.fl_str_mv Clinical research
Health care
Generalisability
topic Clinical research
Health care
Generalisability
Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
dc.subject.lemb.spa.fl_str_mv Síndrome respiratorio agudo grave
COVID-19
SARS-CoV-2
Coronavirus
description Dr Lee, an esteemed intensivist from the USA, is rounding in an intensive care unit (ICU). He is asked by a team member who is taking care of patients with COVID-19 if they can triage their patients to optimise use of scarce resources, such as ventilators, with their hospital’s new machine learning model to predict mortality.1 He is about to say yes, but stops himself. Do the findings of the preprints and fast-tracked published articles that this model is based on apply to his patient population?2 Problems with the increase in hastily written articles notwithstanding, are the conclusions of research based on patients with COVID-19 in China and Italy from several months ago still valid in his ICU today, given the differences in practice patterns and rapidly changing guidelines and protocols?
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-25T17:20:12Z
dc.date.available.none.fl_str_mv 2020-08-25T17:20:12Z
dc.date.created.none.fl_str_mv 2020
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.issn.spa.fl_str_mv 0140-6736
dc.identifier.other.spa.fl_str_mv https://doi.org/10.1016/S2589-7500(20)30186-2
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/12226
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/S2589-7500(20)30186-2
identifier_str_mv 0140-6736
url https://doi.org/10.1016/S2589-7500(20)30186-2
http://hdl.handle.net/20.500.12010/12226
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv The Lancet
dc.source.spa.fl_str_mv reponame:Expeditio Repositorio Institucional UJTL
instname:Universidad de Bogotá Jorge Tadeo Lozano
instname_str Universidad de Bogotá Jorge Tadeo Lozano
institution Universidad de Bogotá Jorge Tadeo Lozano
reponame_str Expeditio Repositorio Institucional UJTL
collection Expeditio Repositorio Institucional UJTL
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/3/1-s2.0-S2589750020301862-main.pdf.jpg
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/1/1-s2.0-S2589750020301862-main.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/2/license.txt
bitstream.checksum.fl_str_mv 0f54f6c2d1b3642f058f7505669f69d7
6a37736a357d56e125557c223d30958d
abceeb1c943c50d3343516f9dbfc110f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213901898743808
spelling 2020-08-25T17:20:12Z2020-08-25T17:20:12Z20200140-6736https://doi.org/10.1016/S2589-7500(20)30186-2http://hdl.handle.net/20.500.12010/12226https://doi.org/10.1016/S2589-7500(20)30186-2Dr Lee, an esteemed intensivist from the USA, is rounding in an intensive care unit (ICU). He is asked by a team member who is taking care of patients with COVID-19 if they can triage their patients to optimise use of scarce resources, such as ventilators, with their hospital’s new machine learning model to predict mortality.1 He is about to say yes, but stops himself. Do the findings of the preprints and fast-tracked published articles that this model is based on apply to his patient population?2 Problems with the increase in hastily written articles notwithstanding, are the conclusions of research based on patients with COVID-19 in China and Italy from several months ago still valid in his ICU today, given the differences in practice patterns and rapidly changing guidelines and protocols?4 páginasapplication/pdfengThe Lancetreponame:Expeditio Repositorio Institucional UJTLinstname:Universidad de Bogotá Jorge Tadeo LozanoClinical researchHealth careGeneralisabilitySíndrome respiratorio agudo graveCOVID-19SARS-CoV-2CoronavirusThe myth of generalisability in clinical research and machine learning in health careArtículohttp://purl.org/coar/resource_type/c_2df8fbb1Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Futoma, JosephSimons, MorganPanch, TrishanDoshi-Velez, FinaleCeli, Leo AnthonyTHUMBNAIL1-s2.0-S2589750020301862-main.pdf.jpg1-s2.0-S2589750020301862-main.pdf.jpgIM Thumbnailimage/jpeg15696https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/3/1-s2.0-S2589750020301862-main.pdf.jpg0f54f6c2d1b3642f058f7505669f69d7MD53open accessORIGINAL1-s2.0-S2589750020301862-main.pdf1-s2.0-S2589750020301862-main.pdfVer artículoapplication/pdf88253https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/1/1-s2.0-S2589750020301862-main.pdf6a37736a357d56e125557c223d30958dMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/12226/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open access20.500.12010/12226oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/122262020-08-25 12:20:13.068open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==