Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study

Circulating osteoprogenitor (COP) cells are blood-borne cellswhich express a variety of osteoblasticmarkers and are able to formbone nodules in vivo.Whereas a high percentage of COP cells (%COP) is associatedwith vascular calcification, low %COP has been associated with disability and frailty. Howev...

Full description

Autores:
Gunawardene, Piumali
Al Saedi, Ahmed
Singh, Lakshman
Bermeo, Sandra
Vogrin, Sara
Phu, Steven
Suriyaarachchi, Pushpa
Pignolo, Robert J.
Duque, Gustavo
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1933
Acceso en línea:
http://hdl.handle.net/20.500.12442/1933
Palabra clave:
Osteosarcopenia
Stem cells
Musculoskeletal
Circulating osteoprogenitors
Rights
License
licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_fa454fde683221a5ec7e818c34f5a10a
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1933
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
title Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
spellingShingle Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
Osteosarcopenia
Stem cells
Musculoskeletal
Circulating osteoprogenitors
title_short Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
title_full Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
title_fullStr Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
title_full_unstemmed Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
title_sort Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study
dc.creator.fl_str_mv Gunawardene, Piumali
Al Saedi, Ahmed
Singh, Lakshman
Bermeo, Sandra
Vogrin, Sara
Phu, Steven
Suriyaarachchi, Pushpa
Pignolo, Robert J.
Duque, Gustavo
dc.contributor.author.none.fl_str_mv Gunawardene, Piumali
Al Saedi, Ahmed
Singh, Lakshman
Bermeo, Sandra
Vogrin, Sara
Phu, Steven
Suriyaarachchi, Pushpa
Pignolo, Robert J.
Duque, Gustavo
dc.subject.eng.fl_str_mv Osteosarcopenia
Stem cells
Musculoskeletal
Circulating osteoprogenitors
topic Osteosarcopenia
Stem cells
Musculoskeletal
Circulating osteoprogenitors
description Circulating osteoprogenitor (COP) cells are blood-borne cellswhich express a variety of osteoblasticmarkers and are able to formbone nodules in vivo.Whereas a high percentage of COP cells (%COP) is associatedwith vascular calcification, low %COP has been associated with disability and frailty. However, the reference range of %COP in age- and gender-matching populations, and the age-related changes in %COP remain unknown. A cross-sectional studywas undertaken in 144 healthy volunteers inWestern Sydney (20–90 year-old, 10male and 10 female subjects per decade). %COP was quantified by flow cytometry. A high inter-and intra-rater reliability was found. In average, in this healthy population average of %COP was 0.42. There was no significant difference in %COP among the age groups. Similarly, no significant difference was found in %COP with gender, weight, height or BMI. In addition, we identified a normal reference range of %COP of 0.1–3.8%. In conclusion, in addition to the identification of steady levels of COP cells with age, we also identified a normal reference range of %COP, which could be used in future studies looking at musculoskeletal diseases in older populations.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-06
dc.date.accessioned.none.fl_str_mv 2018-04-02T21:04:00Z
dc.date.available.none.fl_str_mv 2018-04-02T21:04:00Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 05315565
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1933
identifier_str_mv 05315565
url http://hdl.handle.net/20.500.12442/1933
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Elsevier
dc.source.spa.fl_str_mv Experimental Gerontology
Vol. 96 (2017)
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv https://doi.org/10.1016/j.exger.2017.06.004
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/cadb3d9d-fc65-4f2b-ace8-f116c1a6590c/download
bitstream.checksum.fl_str_mv 3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1812100528335749120
spelling licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Gunawardene, Piumali4f64fa86-c6d8-4ef5-b4fa-751fcccb8ea6-1Al Saedi, Ahmedd861778b-9391-449a-92a5-92a1ad1b83c8-1Singh, Lakshmanfc0e005b-34db-4910-9e84-7a601392896e-1Bermeo, Sandra5adcb3ad-0b9f-41f8-8a5f-a4d6086d31ef-1Vogrin, Sara806a44b8-9f2a-491f-b91b-5796665f7cbd-1Phu, Stevenc0787bef-53f4-43cd-8857-98d4634a6341-1Suriyaarachchi, Pushpade4aafc6-f489-4964-8864-fd332b5e5fa0-1Pignolo, Robert J.74c728ed-5b20-41e0-bf3e-d5841bbe8fe1-1Duque, Gustavof99ef41b-e311-4165-bbc4-73e084153d5f-12018-04-02T21:04:00Z2018-04-02T21:04:00Z2017-0605315565http://hdl.handle.net/20.500.12442/1933Circulating osteoprogenitor (COP) cells are blood-borne cellswhich express a variety of osteoblasticmarkers and are able to formbone nodules in vivo.Whereas a high percentage of COP cells (%COP) is associatedwith vascular calcification, low %COP has been associated with disability and frailty. However, the reference range of %COP in age- and gender-matching populations, and the age-related changes in %COP remain unknown. A cross-sectional studywas undertaken in 144 healthy volunteers inWestern Sydney (20–90 year-old, 10male and 10 female subjects per decade). %COP was quantified by flow cytometry. A high inter-and intra-rater reliability was found. In average, in this healthy population average of %COP was 0.42. There was no significant difference in %COP among the age groups. Similarly, no significant difference was found in %COP with gender, weight, height or BMI. In addition, we identified a normal reference range of %COP of 0.1–3.8%. In conclusion, in addition to the identification of steady levels of COP cells with age, we also identified a normal reference range of %COP, which could be used in future studies looking at musculoskeletal diseases in older populations.engElsevierExperimental GerontologyVol. 96 (2017)https://doi.org/10.1016/j.exger.2017.06.004OsteosarcopeniaStem cellsMusculoskeletalCirculating osteoprogenitorsAge, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Studyarticlehttp://purl.org/coar/resource_type/c_6501Almeida, M., 2012. Aging mechanisms in bone. BoneKEy Rep. 1.Beane, O.S., Fonseca, V.C., Cooper, L.L., Koren, G., Darling, E.M., 2014. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 9, e115963Benisch, P., Schilling, T., Klein-Hitpass, L., Frey, S.P., Seefried, L., Raaijmakers, N., et al., 2012. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7, e45142.Charlson, M.E., Pompei, P., Ales, K.L., MacKenzie, C.R., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383.Cherian, S., Moore, J., Bantly, A., et al., 2005. Peripheral blood MDS score: a new flow cytometric tool for the diagnosis of myelodysplastic syndromes. Cytometry B Clin. Cytom. 64, 9.Demontiero, O., Boersma, D., Suriyaarachchi, P., Duque, G., 2014. Clinical outcomes of impaired muscle and bone interactions. Clin. Rev. Bone Miner. Metab. 12, 86–92.Egan, K.P., Kim, J.H., Mohler 3rd, E.R., Pignolo, R.J., 2011. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler. Thromb. Vasc. Biol. 31, 2965–2971.Eghbali-Fatourechi, G.Z., Lamsam, J., Fraser, D., Nagel, D., Riggs, B.L., Khosla, S., 2005. Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 352, 1959–1966.Grounds, M.D., 2014. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. BioArchitecture 4, 81–87Gunawardene, P., Bermeo, S., Vidal, C., Al-Saedi, A., Chung, P., Boersma, D., et al., 2016. Association between circulating osteogenic progenitor cells and disability and frailty in older persons: the Nepean osteoporosis and frailty study. J. Gerontol. A Biol. Sci.Med. Sci. 71, 1124–1130.Ishihara, A., Bertone, A.L., 2012. Cell-mediated and direct gene therapy for bone regeneration. Expert. Opin. Biol. Ther. 12, 411–423.Jiang, S.S., Chen, C.H., Tseng, K.Y., Tsai, F.Y., Wang, M.J., Chang, I.S., et al., 2011. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging 3, 672–684.Magni, P., Dozio, E., Galliera, E., Ruscica, M., Corsi, M.M., 2010. Molecular aspects of adipokine–bone interactions. Curr. Mol. Med. 10, 522–532.Pignolo, R.J., Kassem, M., 2011. Circulating osteogenic cells: implications for injury, repair, and regeneration. J. Bone Miner. Res. 26, 1685–1693.Pirro,M., Leli, C., Fabbriciani, G.,Manfredelli, M.R., Callarelli, L., Bagaglia, F., et al., 2010. Association between circulating osteoprogenitor cell numbers and bone mineral density in postmenopausal osteoporosis. Osteoporos. Int. 21, 297–306.Sethe, S., Scutt, A., Stolzing, A., 2006. Aging ofmesenchymal stem cells. Ageing Res. Rev. 5, 91–116.Stolzing, A., Jones, E., McGonagle, D., Scutt, A., 2008. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 129, 163–173.Suda, R.K., Billings, P.C., Egan, K.P., Kim, J.H., McCarrick-Walmsley, R., Glaser, D.L., et al., 2009. Circulating osteogenic precursor cells in heterotopic bone formation. Stem Cells 27, 2209–2219.Tong, J., Li,W., Vidal, C., Yeo, L.S., Fatkin, D., Duque, G., 2011. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech. Ageing Dev. 132, 552–559.Toupadakis, C.A., Granick, J.L., Sagy,M.,Wong, A., Ghassemi, E., Chung, D.J., Borjesson, D.L., Yellowley, C.E., 2013. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy 15, 1136–1147.Urbich, C., Dimmeler, S., 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95, 343–353.Zhou, S., Greenberger, J.S., Epperly, M.W., Goff, J.P., Adler, C., Leboff, M.S., Glowacki, J., 2008. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7, 335–343.LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/cadb3d9d-fc65-4f2b-ace8-f116c1a6590c/download3fdc7b41651299350522650338f5754dMD5320.500.12442/1933oai:bonga.unisimon.edu.co:20.500.12442/19332019-04-11 21:51:34.35metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=