A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis
This article reports a three-stage computational approach for the automatic detection of Leishmania protozoan in light microphotograph from bone marrow samples extracted from patients with visceral Leishmaniasis. The first stage corresponds to the pre-processing of the microscopy images, in which in...
- Autores:
-
Isaza-Jaimes, Angélica
Bérmudez, Valmore
Bravo, Antonio
Sierra Castrillo, Jhoalmis
Hernández Lalinde, Juan Diego
Fossi, Cleiver A.
Flórez, Anderson
Rodríguez, Johel E.
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/9491
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/9491
http://doi.org/10.5281/zenodo.4426403
http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21140
- Palabra clave:
- Protozoan
Leishmania
micrographics
anisotropic diffusion
gradient operator
intensity profiles
Protozoario
micrografía
difusión anisotrópica
operador de gradiente
perfiles de intensidad
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_f9b7bb2f83ae3f337d7c1aa0d2fef3d3 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/9491 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
dc.title.translated.spa.fl_str_mv |
Un enfoque computacional para la detección de protozoos del género Leishmania en muestras de médula ósea de pacientes con leishmaniasis visceral |
title |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
spellingShingle |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis Protozoan Leishmania micrographics anisotropic diffusion gradient operator intensity profiles Protozoario micrografía difusión anisotrópica operador de gradiente perfiles de intensidad |
title_short |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
title_full |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
title_fullStr |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
title_full_unstemmed |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
title_sort |
A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis |
dc.creator.fl_str_mv |
Isaza-Jaimes, Angélica Bérmudez, Valmore Bravo, Antonio Sierra Castrillo, Jhoalmis Hernández Lalinde, Juan Diego Fossi, Cleiver A. Flórez, Anderson Rodríguez, Johel E. |
dc.contributor.author.none.fl_str_mv |
Isaza-Jaimes, Angélica Bérmudez, Valmore Bravo, Antonio Sierra Castrillo, Jhoalmis Hernández Lalinde, Juan Diego Fossi, Cleiver A. Flórez, Anderson Rodríguez, Johel E. |
dc.subject.eng.fl_str_mv |
Protozoan Leishmania micrographics anisotropic diffusion gradient operator intensity profiles |
topic |
Protozoan Leishmania micrographics anisotropic diffusion gradient operator intensity profiles Protozoario micrografía difusión anisotrópica operador de gradiente perfiles de intensidad |
dc.subject.spa.fl_str_mv |
Protozoario micrografía difusión anisotrópica operador de gradiente perfiles de intensidad |
description |
This article reports a three-stage computational approach for the automatic detection of Leishmania protozoan in light microphotograph from bone marrow samples extracted from patients with visceral Leishmaniasis. The first stage corresponds to the pre-processing of the microscopy images, in which initially a low-pass filter or softener was applied to attenuate the undesired information associated with the images and preserve the edges in the objects contained in the images. The pre-processing stage concluded with the applica tion of consistent gradient operators to the smoothed images to emphasise the changes of the intensities associated with the protozoa edges by determining the gradient module. In the second stage, a procedure-oriented to the selection of regions of interest that were candidates to contain parasites in the pre-processed images was developed, based on the intensity analysis associated with a set of intensity profiles selected from the smoothed images. In the final stage, each region of interest containing protozoa was analysed on the gradient module by a technique based on polar maps, to clas sify its content as a parasite of the genus Leishmania or not. The application of the proposed computational approach to a set of samples of patients with Visceral Leishmaniasis generated a recognition parasite percentage of approximately 80% |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2022-03-30T14:12:03Z |
dc.date.available.none.fl_str_mv |
2022-03-30T14:12:03Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
26107988 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/9491 |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.5281/zenodo.4426403 |
dc.identifier.url.none.fl_str_mv |
http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21140 |
identifier_str_mv |
26107988 |
url |
https://hdl.handle.net/20.500.12442/9491 http://doi.org/10.5281/zenodo.4426403 http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21140 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Saber UCV, Universidad Central de Venezuela |
dc.source.spa.fl_str_mv |
Revista AVFT - Archivos Venezolanos de Farmacología y Terapéutica |
dc.source.none.fl_str_mv |
Vol 39, No 7 (2020) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/9a0975a2-27a6-46b7-8d95-410fba111bf9/download https://bonga.unisimon.edu.co/bitstreams/b2f83645-717f-4c9b-9ada-1214e823ea32/download https://bonga.unisimon.edu.co/bitstreams/e645f3a7-e306-46ad-9cbf-0486cf6a4de5/download https://bonga.unisimon.edu.co/bitstreams/b07b2c83-8f40-41d5-89b1-8d8b4d562a80/download https://bonga.unisimon.edu.co/bitstreams/50d75abf-29fd-4c46-b6ff-cf955baa9009/download https://bonga.unisimon.edu.co/bitstreams/35e4f4c3-cca4-4633-abaa-ae4aba26427a/download https://bonga.unisimon.edu.co/bitstreams/2fcdc027-9652-485a-b9fe-5bbca434f433/download |
bitstream.checksum.fl_str_mv |
6939f565f4a3378bf8e18708542ffc75 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 50cd091f5c437db347806a0a98546ac9 50cd091f5c437db347806a0a98546ac9 2e01ccd890c90aa4912f4b00763a7db7 2e01ccd890c90aa4912f4b00763a7db7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076094164238336 |
spelling |
Isaza-Jaimes, Angélica8231ab3d-a8c4-479a-98e7-0bb1f01d8f81Bérmudez, Valmorec2bdde90-7859-4499-94a9-cdae3e689d08Bravo, Antonio07aba3dd-3344-4237-9ad4-3d40d655e915Sierra Castrillo, Jhoalmisb428e633-f0b7-4511-8e99-8c7c2f6fe31bHernández Lalinde, Juan Diego9cdd9c70-b0b1-4267-94ce-ad4d3b00b5e0Fossi, Cleiver A.9c86b495-db48-4aa1-8627-7234014c19d9Flórez, Andersoneeff7a0b-eef1-415e-a084-10c736cdaa19Rodríguez, Johel E.b387eb8f-a5e2-4038-820b-c6d4c9f62a9d2022-03-30T14:12:03Z2022-03-30T14:12:03Z202026107988https://hdl.handle.net/20.500.12442/9491http://doi.org/10.5281/zenodo.4426403http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21140This article reports a three-stage computational approach for the automatic detection of Leishmania protozoan in light microphotograph from bone marrow samples extracted from patients with visceral Leishmaniasis. The first stage corresponds to the pre-processing of the microscopy images, in which initially a low-pass filter or softener was applied to attenuate the undesired information associated with the images and preserve the edges in the objects contained in the images. The pre-processing stage concluded with the applica tion of consistent gradient operators to the smoothed images to emphasise the changes of the intensities associated with the protozoa edges by determining the gradient module. In the second stage, a procedure-oriented to the selection of regions of interest that were candidates to contain parasites in the pre-processed images was developed, based on the intensity analysis associated with a set of intensity profiles selected from the smoothed images. In the final stage, each region of interest containing protozoa was analysed on the gradient module by a technique based on polar maps, to clas sify its content as a parasite of the genus Leishmania or not. The application of the proposed computational approach to a set of samples of patients with Visceral Leishmaniasis generated a recognition parasite percentage of approximately 80%Este artículo reporta un enfoque computacional en tres etapas para la detección automática de protozoos del género Leishmania en microfotografías a partir de muestras de médula ósea extraídas de pacientes con Leishmaniasis visceral. La primera etapa correspondió al preprocesamiento de las imágenes de microscopía, en la que inicialmente se aplicó un filtro de paso bajo para atenuar la información no deseada asociada a las imágenes y preservar los bordes en los objetos. La etapa de preprocesamiento concluyó con la aplicación de operadores de gradiente a las imágenes suavizadas para enfatizar los cambios de las intensidades asociadas con los bordes de los protozoos. En la segunda etapa se elaboró un procedimiento orientado a la selección de las regiones de interés candidatas a contener parásitos, sobre la base del análisis de intensidad asociado a un conjunto de perfiles seleccionados a partir de las imágenes suavizadas. En la etapa final, cada región de interés que contenía protozoos fue analizada en el módulo de gradiente mediante una técnica basada en mapas polares de forma de clasificar su contenido como parásito del género Leishmania. La aplicación del enfoque computacional propuesto generó un porcentaje de reconocimiento del parásito de aproximadamente el 80%pdfengSaber UCV, Universidad Central de VenezuelaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista AVFT - Archivos Venezolanos de Farmacología y TerapéuticaVol 39, No 7 (2020)ProtozoanLeishmaniamicrographicsanisotropic diffusiongradient operatorintensity profilesProtozoariomicrografíadifusión anisotrópicaoperador de gradienteperfiles de intensidadA computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral LeishmaniasisUn enfoque computacional para la detección de protozoos del género Leishmania en muestras de médula ósea de pacientes con leishmaniasis visceralinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/resource_type/c_2df8fbb1Navarro-Pérez JJ, Pastor-Seller E. Factores dinámicos en el comportamiento de delincuentes juveniles con perfil de ajuste social. Un estudio de reincidencia. Psychosoc Interv. 2017;26(1):19-27.Salgado-Almario J, Hernández CA, Ovalle CE. Distribución geográfica de las especies de Leishmania en Colombia, 1985-2017. Bio- médica [Internet]. 2019 [cited 2019 Apr 28];39(Sp.2):1–10. Available from: https://www.revistabiomedica.org/index.php/biomedica/article/ view/4312Cardona Arias JA, Patiño-Martinez DA, López Carvajal L. Evaluaciones económicas en Leishmaniasis cutánea: revisión sistemática de literatura 1980-2014. Rev Econ del Caribe [Internet]. 2017 [cited 2019 Apr 21];2(20):52–70. Available from: http://rcientificas.uninorte. edu.co/index.php/economia/article/view/8580/html_398Manual de procedimientos para la vigilancia y control de las leish- maniasis [Internet]. [cited 2019 Apr 21]. Available from: www.paho. orgNamakforoosh, M., Metodología de la investigación. Editorial Limusa, México, 2000Cegarra, J., Metodología de la investigación científica y técnológica. Ediciones Díaz de Santos, España, 2011.Pressman, R., Ingeniería de software un enfoque práctico. McGraw Hill, España 2005.Gradoni L. A Brief Introduction to Leishmaniasis Epidemiology. In: The Leishmaniases: Old Neglected Tropical Diseases [Internet]. Cham: Springer International Publishing; 2018 [cited 2019 Apr 28]. p. 1–13. Available from: http://link.springer.com/10.1007/978-3-319-Makerere Medical School. A, Yinusa W, Giwa S. African health sciences. [Internet]. Vol. 11, African Health Sciences. Faculty of Medicine, Makerere University; 2001 [cited 2019 Apr 28].1329– 1337 p. Available from: https://www.ajol.info/index.php/ahs/article/ view/18559WHO | Epidemiological situation. WHO [Internet]. 2018 [cited 2019 Apr 28]; Available from: https://www.who.int/leishmaniasis/burden/ en/.Stark CG, Vidyashankar C. Leishmaniasis [Internet]. Medscape. [cited 2019 Apr 28]. p. 1–8. Available from: https://emedicine.med- scape.com/article/220298-workupSundar S, Rai M. Laboratory Diagnosis of Visceral Leishmani- asis. Clin Diagn Lab Immunol [Internet]. 2002 [cited 2019 Apr 21];9(5):951–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC120052/pdf/0013.pdfGonzález-Marcano E, Kato H, Concepción JL, Márquez ME, Mon- dolfi AP. Polymerase Chain Reaction Diagnosis of Leishmaniasis: A Species-Specific Approach. In: Methods in molecular biology (Clif- ton, NJ) [Internet]. 2016 [cited 2019 Apr 21]. p. 113–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26843051Paul Bird, Imaging in the Mobile Domain, Rheumatic Disease Clinics of North America, Volume 45, Issue 2, 2019, [cited 2019 Apr 21], Pages 291-302, ISBN 9780323678629, https://doi.org/10.1016/j. rdc.2019.01.002M. Farahi, H. Rabbani, A. Mehri, "Automatic Boundary Extraction of Leishman Bodies in Bone Marrow Samples from Patients with Visceral Leishmaniasis", Journal of Isfahan Medical School, vol. 32, no. 286, 3rd week, July 2014. Dataset: https://sites.google.com/site/ hosseinrabbanikhorasgani/datasets-1/dataset-of-leishmania-para-Hunt, R.W.: The Reproduction of Colour, Series in Imaging Science and Technology, 6ta edición, John Wiley & Sons, 2005Cañero, C., Radeva, P.: Vesselness enhancement diffusion. Pattern 914 www.revistaavft.com Recognition Letters 24(16): 3141–3151, 2003.Meijering, H.: Image Enhancement in Digital X–Ray Angiography. Tesis de Doctorado, Utrecht University, 2000.Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multi-scale ves- sel enhancement filtering. In: Proceedings International Conference on Medical Image Computing and Computer Assisted Intervention. Lecture Notes in Computer Science, Germany, 130–137, 1998.Schroeder, W. The Visualization Toolkit: an object–oriented approach to 3D graphics. Kitware, Clifton Park, N.Y, 2006.Schroeder, W. The Visualization Toolkit: an object–oriented ap- proach to 3D graphics. Kitware, Clifton Park, N.Y, 2006.Pauwels, E., Frederix, G. Finding salient regions in images: Non- parametric clustering for images segmentation and grouping. Computer Vision and Image Understanding 75(1-2):73-85, 1999.Liu, Y. Study on Automatic Threshold Selection Algorithm of Sensor Images, Physics Procedia, 25:1769-1775, 2012.Qian, X., Brennan, M., Dione D., Dobrucki, W., Jackowski, M., Breuer, C., Sinusas, A. y Papademetris, X. A non-parametric vessel detection method for complex vascular structures. Medical Image Analysis, 13(1): 46-61, 2008.Report of the Interregional meeting on Leishmaniasis among neigh- bouring endemic countries in the Eastern Mediterranean, African and European regions, Amman, Jordan, 23–25 September 2018. [cited 2019 Apr 22]; Available from: https://www.who.int/leishmani- asis/resources/who-em-ctd-081-e/en/Manual of procedures for surveillance and control of Leishmaniasis in the Americas (in Spanish). [cited 2019 Apr 21]; Available from: https://www.who.int/leishmaniasis/resources/978-92-75-32063-1/Manual of procedures for surveillance and control of Leishmaniasis in the Americas (in Spanish). [cited 2019 Apr 21]; Available from: https://www.who.int/leishmaniasis/resources/978-92-75-32063-1/Essential leishmaniasis maps. [cited 2019 Apr 22]; Available from: https://www.who.int/leishmaniasis/leishmaniasis_maps/en/Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Im- age analysis and machine learning for detecting malaria. Transl Res; 194(2018):36–55. Available from: https://doi.org/10.1016/j. trsl.2017.12.004Saeed MA, Jabbara A. "Smart diagnosis" of parasitic diseases by use of smartphones. J Clin Microbiol; [cited 2019 Apr 21];56(1):e01469- 17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29046408Coulibaly JT, Ouattara M, D'Ambrosio M V., Fletcher DA, Keiser J, Utzinger J, et al. Accuracy of Mobile Phone and Handheld Light Mi- croscopy for the Diagnosis of Schistosomiasis and Intestinal Proto- zoa Infections in Côte d'Ivoire. Hsieh MH, editor. PLoS Negl Trop Dis; [cited 2019 Apr 21];10(6):e0004768. Available from: https:// dx.plos.org/10.1371/journal.pntd.0004768Dallet C, Kareem S, Kale I. Real time blood image processing application for malaria diagnosis using mobile phones. In: International Conference on Circuits and Systems. IEEE;2014. p. 2405–2408.Rosado L, Da Costa JMC, Elias D, Cardoso JS. Automated Detection of Malaria Parasites on Thick Blood Smears via Mobile Devices. In: Procedia Computer Science [cited 2019 Apr 21].p.138–44. Available from: https://www.sciencedirect.com/science/article/pii/ S1877050916312029Farahi M, Rabbani H, Talebi A, Sarrafzadeh O, Ensafi S. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method. Seventh Int Conf Graph Image Pro- cess (ICGIP 2015). 2015;9817(January 2016):98170K.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf582233https://bonga.unisimon.edu.co/bitstreams/9a0975a2-27a6-46b7-8d95-410fba111bf9/download6939f565f4a3378bf8e18708542ffc75MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/b2f83645-717f-4c9b-9ada-1214e823ea32/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/e645f3a7-e306-46ad-9cbf-0486cf6a4de5/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2020_AVFT_A-computational-approach-for-Leishmania.pdf.txt2020_AVFT_A-computational-approach-for-Leishmania.pdf.txtExtracted texttext/plain44828https://bonga.unisimon.edu.co/bitstreams/b07b2c83-8f40-41d5-89b1-8d8b4d562a80/download50cd091f5c437db347806a0a98546ac9MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain44828https://bonga.unisimon.edu.co/bitstreams/50d75abf-29fd-4c46-b6ff-cf955baa9009/download50cd091f5c437db347806a0a98546ac9MD56THUMBNAIL2020_AVFT_A-computational-approach-for-Leishmania.pdf.jpg2020_AVFT_A-computational-approach-for-Leishmania.pdf.jpgGenerated Thumbnailimage/jpeg6397https://bonga.unisimon.edu.co/bitstreams/35e4f4c3-cca4-4633-abaa-ae4aba26427a/download2e01ccd890c90aa4912f4b00763a7db7MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6397https://bonga.unisimon.edu.co/bitstreams/2fcdc027-9652-485a-b9fe-5bbca434f433/download2e01ccd890c90aa4912f4b00763a7db7MD5720.500.12442/9491oai:bonga.unisimon.edu.co:20.500.12442/94912024-08-14 21:51:57.906http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |