Genetic variation underpinning ADHD risk in a caribbean community

Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and...

Full description

Autores:
Puentes-Rozo, Pedro J.
Acosta-López, Johan E.
Cervantes-Henríquez, Martha L.
Martínez-Banfi, Martha L.
Mejia-Segura, Elsy
Sánchez-Rojas, Manuel
Anaya-Romero, Marco E.
Acosta-Hoyos, Antonio
García-Llinás, Guisselle A.
Mastronardi, Claudio A.
Pineda, David A.
Castellanos, F. Xavier
Arcos-Burgos, Mauricio
Vélez, Jorge I.
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/3886
Acceso en línea:
https://hdl.handle.net/20.500.12442/3886
Palabra clave:
ADHD
ADGRL3
LPHN3
SNAP25
FGF1
Genetics
Caribbean community
FBAT
Predictive genomics
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_f82bb5bf00eb43177d233a0294eef64f
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/3886
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Genetic variation underpinning ADHD risk in a caribbean community
title Genetic variation underpinning ADHD risk in a caribbean community
spellingShingle Genetic variation underpinning ADHD risk in a caribbean community
ADHD
ADGRL3
LPHN3
SNAP25
FGF1
Genetics
Caribbean community
FBAT
Predictive genomics
title_short Genetic variation underpinning ADHD risk in a caribbean community
title_full Genetic variation underpinning ADHD risk in a caribbean community
title_fullStr Genetic variation underpinning ADHD risk in a caribbean community
title_full_unstemmed Genetic variation underpinning ADHD risk in a caribbean community
title_sort Genetic variation underpinning ADHD risk in a caribbean community
dc.creator.fl_str_mv Puentes-Rozo, Pedro J.
Acosta-López, Johan E.
Cervantes-Henríquez, Martha L.
Martínez-Banfi, Martha L.
Mejia-Segura, Elsy
Sánchez-Rojas, Manuel
Anaya-Romero, Marco E.
Acosta-Hoyos, Antonio
García-Llinás, Guisselle A.
Mastronardi, Claudio A.
Pineda, David A.
Castellanos, F. Xavier
Arcos-Burgos, Mauricio
Vélez, Jorge I.
dc.contributor.author.none.fl_str_mv Puentes-Rozo, Pedro J.
Acosta-López, Johan E.
Cervantes-Henríquez, Martha L.
Martínez-Banfi, Martha L.
Mejia-Segura, Elsy
Sánchez-Rojas, Manuel
Anaya-Romero, Marco E.
Acosta-Hoyos, Antonio
García-Llinás, Guisselle A.
Mastronardi, Claudio A.
Pineda, David A.
Castellanos, F. Xavier
Arcos-Burgos, Mauricio
Vélez, Jorge I.
dc.subject.eng.fl_str_mv ADHD
ADGRL3
LPHN3
SNAP25
FGF1
Genetics
Caribbean community
FBAT
Predictive genomics
topic ADHD
ADGRL3
LPHN3
SNAP25
FGF1
Genetics
Caribbean community
FBAT
Predictive genomics
description Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 10x-4), rs2282794-FGF1 (A allele; p = 1.33 10x-2), rs2122642-ADGRL3 (C allele, p = 3.5 10x-2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-03T15:34:39Z
dc.date.available.none.fl_str_mv 2019-09-03T15:34:39Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 20734409
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/3886
identifier_str_mv 20734409
url https://hdl.handle.net/20.500.12442/3886
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Published by MDP
dc.source.spa.fl_str_mv Revista Cell
Vol. 8 No. 8 (2019)
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv https://doi.org/10.3390/cells8080907
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/950c5d6e-f2f6-42bc-8b2d-ab7ec21872df/download
https://bonga.unisimon.edu.co/bitstreams/269df203-66a8-4728-b230-22fd76b4471a/download
https://bonga.unisimon.edu.co/bitstreams/1fd230dd-f2f8-4944-813d-70524bf6c9e0/download
https://bonga.unisimon.edu.co/bitstreams/ee028562-0c84-4eb7-946e-07931034aaac/download
https://bonga.unisimon.edu.co/bitstreams/1bb3c489-ab27-465e-96dc-483470a3eb41/download
https://bonga.unisimon.edu.co/bitstreams/3a9c9169-58c1-4c30-bea0-16399c3455d2/download
https://bonga.unisimon.edu.co/bitstreams/54bbaf4b-00ba-4ff0-b822-3904ec66a4a4/download
bitstream.checksum.fl_str_mv 8a8fecb9be6765a17ff21b633eb2c030
4460e5956bc1d1639be9ae6146a50347
3fdc7b41651299350522650338f5754d
e61ecc9c56bc57c54a6a604722f6f393
09a19d5fe63e724f5d9430a23004a732
92d2c37e6b8c172661dfa24a7d2f87ef
9230221bf012a21328c1285addb919b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100492415729664
spelling Puentes-Rozo, Pedro J.f5776586-b6b2-4086-8bed-3e4972516196Acosta-López, Johan E.b7a16ff4-ce8a-419c-a6ba-597013d207edCervantes-Henríquez, Martha L.fb444be3-6d82-40aa-8a3c-75f422f8ec66Martínez-Banfi, Martha L.1b81e373-3714-45ae-880d-823a74a8c415Mejia-Segura, Elsy93d20bbf-dfbf-45b5-8c91-f33f3b2764ccSánchez-Rojas, Manuel6fb45b46-3064-4222-9dbc-4c9687eea18fAnaya-Romero, Marco E.2570c3a6-1f6c-4501-ac81-5740e09a3213Acosta-Hoyos, Antonio09a6d3fe-f531-42c9-adfe-e782d15f43f6García-Llinás, Guisselle A.def109fc-2946-4278-b37e-b4cecbf804baMastronardi, Claudio A.55aa2248-59ef-49ea-9101-21682e3932a0Pineda, David A.7fa7af6f-d0cb-4f00-b3bf-d0b4188e1ffaCastellanos, F. Xavierfd693e91-0459-48e6-814f-030688b23568Arcos-Burgos, Mauriciob0eeb625-a6f6-4508-8925-309b5f765a14Vélez, Jorge I.83044e45-79cc-4eec-a9cc-72bf4514e76b2019-09-03T15:34:39Z2019-09-03T15:34:39Z201920734409https://hdl.handle.net/20.500.12442/3886Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 10x-4), rs2282794-FGF1 (A allele; p = 1.33 10x-2), rs2122642-ADGRL3 (C allele, p = 3.5 10x-2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.engPublished by MDPAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Revista CellVol. 8 No. 8 (2019)https://doi.org/10.3390/cells8080907ADHDADGRL3LPHN3SNAP25FGF1GeneticsCaribbean communityFBATPredictive genomicsGenetic variation underpinning ADHD risk in a caribbean communityarticlehttp://purl.org/coar/resource_type/c_6501Visser, S.; Bitsko, R.; Danielson, M.; Perou, R. Increasing prevalence of parent-reported attention-deficit/hyperactivity disorder among children—United States, 2003 and 2007. Mortal. Morb. Wkly. Rep. 2010, 59, 1439–1443.Jain, M.; Velez, J.I.; Acosta, M.T.; Palacio, L.G.; Balog, J.; Roessler, E.; Pineda, D.; Londono, A.C.; Palacio, J.D.; Arbelaez, A.; et al. A cooperative interaction between lphn3 and 11q doubles the risk for adhd. Mol. Psychiatry 2011, 17, 741–747Acosta, M.T.; Velez, J.I.; Bustamante, M.L.; Balog, J.Z.; Arco-Burgos, M.; Muenke, M. A two-locus genetic interaction between lphn3 and 11q predicts adhd severity and long-term outcome. Transl. Psychiatry 2011, 1, e17.Bukstein, O.G. Attention deficit hyperactivity disorder and substance use disorders. Curr. Top. Behav. Neurosci. 2012, 9, 145–172.Pelham,W.E., Jr.; Fabiano, G.A. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J. Clin. Child. Adolesc. Psychol. 2008, 37, 184–214.Arcos-Burgos, M.; Jain, M.; Acosta, M.T.; Shively, S.; Stanescu, H.; Wallis, D.; Domene, S.; Velez, J.I.; Karkera, J.D.; Balog, J.; et al. A common variant of the latrophilin 3 gene, lphn3, confers susceptibility to adhd and predicts e ectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066.Sibley, M.H.; Pelham,W.E., Jr.; Molina, B.S.; Gnagy, E.M.;Waschbusch, D.A.; Garefino, A.C.; Kuriyan, A.B.; Babinski, D.E.; Karch, K.M. Diagnosing adhd in adolescence. J. Consult. Clin. Psychol. 2012, 80, 139–150.Sibley, M.H.; Pelham, W.E.; Molina, B.S.; Gnagy, E.M.; Waschbusch, D.A.; Biswas, A.; MacLean, M.G.; Babinski, D.E.; Karch, K.M. The delinquency outcomes of boys with adhd with and without comorbidity. J. Abnorm. Child. Psychol. 2011, 39, 21–32.Molina, B.S.; Pelham, W.E.; Gnagy, E.M.; Thompson, A.L.; Marshal, M.P. Attention-deficit/hyperactivity disorder risk for heavy drinking and alcohol use disorder is age specific. Alcohol Clin. Exp. Res. 2007, 31, 643–654.Jain, M.; Palacio, L.G.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Restrepo, M.I.; Munoz, J.F.; Lopera, F.; Wallis, D.; Berg, K.; et al. Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: Evidence of pleiotropy and new susceptibility loci. Biol. Psychiatry 2007, 61, 1329–1339.Arcos-Burgos, M.; Castellanos, F.X.; Pineda, D.; Lopera, F.; Palacio, J.D.; Palacio, L.G.; Rapoport, J.L.; Berg, K.; Bailey-Wilson, J.E.; Muenke, M. Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 2004, 75, 998–1014.Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. Attention deficit/hyperactivity disorder (adhd): Complex phenotype, simple genotype? Genet. Med. 2004, 6, 1–15.Martinez, A.F.; Muenke, M.; Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of g protei-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 1–10.Bruxel, E.M.; Salatino-Oliveira, A.; Akutagava-Martins, G.C.; Tovo-Rodrigues, L.; Genro, J.P.; Zeni, C.P.; Polanczyk, G.V.; Chazan, R.; Schmitz, M.; Arcos-Burgos, M.; et al. Lphn3 and attention-deficit/hyperactivity disorder: A susceptibility and pharmacogenetic study. Genes Brain Behav. 2015, 14, 419–427.Gomez-Sanchez, C.I.; Riveiro-Alvarez, R.; Soto-Insuga, V.; Rodrigo, M.; Tirado-Requero, P.; Mahillo-Fernandez, I.; Abad-Santos, F.; Carballo, J.J.; Dal-Re, R.; Ayuso, C. Attention deficit hyperactivity disorder: Genetic association study in a cohort of spanish children. Behav. Brain Funct. 2016, 12, 2.Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of lphn3 rs6551665 a/g polymorphism with attention deficit and hyperactivity disorder in korean children. Gene 2015, 566, 68–73.Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Bosch, R.; Richarte, V.; Palomar, G.; Gastaminza, X.; Bielsa, A.; Arcos-Burgos, M.; Muenke, M.; et al. Contribution of lphn3 to the genetic susceptibility to adhd in adulthood: A replication study. Genes Brain Behav. 2010, 10, 149–157.Acosta, M.T.; Swanson, J.; Stehli, A.; Molina, B.S.; Team, M.T.A.; Martinez, A.F.; Arcos-Burgos, M.; Muenke, M. Adgrl3 (lphn3) variants are associated with a refined phenotype of adhd in the mta study. Mol. Genet. Genom. Med. 2016, 4, 540–547.Song, J.; Kim, S.W.; Hong, H.J.; Lee, M.G.; Lee, B.W.; Choi, T.K.; Lee, S.H.; Yook, K.H. Association of snap-25, slc6a2, and lphn3 with oros methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin. Neuropharmacol. 2014, 37, 136–141.Labbe, A.; Liu, A.; Atherton, J.; Gizenko, N.; Fortier, M.E.; Sengupta, S.M.; Ridha, J. Refining psychiatric phenotypes for response to treatment: Contribution of lphn3 in adhd. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159, 776–785.Fallgatter, A.J.; Ehlis, A.C.; Dresler, T.; Reif, A.; Jacob, C.P.; Arcos-Burgos, M.; Muenke, M.; Lesch, K.P. Influence of a latrophilin 3 (lphn3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (adhd). Eur Neuropsychopharmacol. 2013, 23, 458–468.Mathias, R.A.; Taub, M.A.; Gignoux, C.R.; Fu,W.; Musharo , S.; O0Connor, T.D.; Vergara, C.; Torgerson, D.G.; Pino-Yanes, M.; Shringarpure, S.S.; et al. A continuum of admixture in the western hemisphere revealed by the african diaspora genome. Nat. Commun. 2016, 7, 12522.Arcos-Burgos, M.; Muenke, M. Genetics of population isolates. Clin. Genet. 2002, 61, 233–247.Bravo, M.L.; Valenzuela, C.Y.; Arcos-Burgos, O.M. Polymorphisms and phyletic relationships of the paisa community from antioquia (colombia). Gene Geogr. 1996, 10, 11–17.De Castro, M.; Restrepo, C.M. Genetics and genomic medicine in colombia. Mol. Genet. Genom. Med. 2015, 3, 84–91.Ossa, H.; Aquino, J.; Pereira, R.; Ibarra, A.; Ossa, R.H.; Perez, L.A.; Granda, J.D.; Lattig, M.C.; Groot, H.; Fagundes de Carvalho, E.; et al. Outlining the ancestry landscape of colombian admixed populations. PLoS ONE 2016, 11, e0164414.Cervantes-Henriquez, M.L.; Acosta-Lopez, J.E.; Martinez-Banfi, M.L.; Velez, J.I.; Mejia-Segura, E.; Lozano-Gutierrez, S.G.; Sanchez-Rojas, M.; Zurbaran, M.A.; Zurek, E.E.; Arcos-Burgos, M.; et al. Adhd endophenotypes in caribbean families. J. Atten. Disord. 2018.Reich,W. Diagnostic interview for children and adolescents (dica). J. Am. Acad. Child. Adolesc. Psychiatry 2000, 39, 59–66.Palacio, J.D.; Castellanos, F.X.; Pineda, D.A.; Lopera, F.; Arcos-Burgos, M.; Quiroz, Y.T.; Henao, G.C.; Puerta, I.C.; Ramirez, D.L.; Rapoport, J.L.; et al. Attention-deficit/hyperactivity disorder and comorbidities in 18 paisa colombian multigenerational families. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1506–1515.Tacchini, G.; Coppola, M.T.; Musazzi, A.; Altamura, A.C.; Invernizzi, G. multinational validation of the composite international diagnostic interview (cidi). Minerva Psichiatr. 1994, 35, 63–80.Pineda, D.A.; Kamphaus, R.W.; Mora, O.; Restrepo, M.A.; Puerta, I.C.; Palacio, L.G.; Jimenez, I.; Mejia, S.; Garcia, M.; Arango, J.C.; et al. A system of multidimensional behavior assessment. A scale for parents of children from 6 to 11 years of age. Colombian version. Rev. Neurol. 1999, 28, 672–681.APA. Diagnostic and Statistical Manual of Mental Disorders (Dsm), 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000.Puentes-Rozo, P.J.; Pineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martinez-Banfi, M.L.; Jiménez-Figueroa, G.; Mejía-Segura, E.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Zurbarán, M.A.; et al. Attention Deficit/Hyperactivity Disorder and Comorbidities in 120 Nuclear Families From a Caribbean Community. Unpublished work. 2017.Zhang, L.; Chang, S.; Li, Z.; Zhang, K.; Du, Y.; Ott, J.;Wang, J. Adhdgene: A genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res. 2012, 40, D1003–D1009Mastronardi, C.A.; Pillai, E.; Pineda, D.A.; Martinez, A.F.; Lopera, F.; Velez, J.I.; Palacio, J.D.; Patel, H.; Easteal, S.; Acosta, M.T.; et al. Linkage and association analysis of adhd endophenotypes in extended and multigenerational pedigrees from a genetic isolate. Mol. Psychiatry 2016, 21, 1434–1440.Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785.Easton, D.F.; Pooley, K.A.; Dunning, A.M.; Pharoah, P.D.; Thompson, D.; Ballinger, D.G.; Struewing, J.P.; Morrison, J.; Field, H.; Luben, R.; et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447, 1087–1093.Fu,W.;Wang, Y.;Wang, Y.; Li, R.; Lin, R.; Jin, L. Missing call bias in high-throughput genotyping. BMC Genom. 2009, 10, 106.Hunter, D.J.; Kraft, P.; Jacobs, K.B.; Cox, D.G.; Yeager, M.; Hankinson, S.E.;Wacholder, S.;Wang, Z.;Welch, R.; Hutchinson, A.; et al. A genome-wide association study identifies alleles in fgfr2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 2007, 39, 870–874Whittaker, P.; Bumpstead, S.; Downes, K.; Ghori, J. Snp analysis by maldi-tof mass spectrometry. In Cell Biology: A Laboratory Handbook, 3rd ed.; Celis, J., Simons, K., Small, J., Hunter, T., Shotton, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2005.Laird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19, S36–S42.Spielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (iddm). Am. J. Hum. Genet. 1993, 52, 506–516.Mowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting adhd clinical diagnosis and pharmacological treatment. Eur. Child. Adolesc. Psychiatry 2018, 28, 481–489.Oerbeck, B.; Overgaard, K.; Pripp, A.H.; Aase, H.; Reichborn-Kjennerud, T.; Zeiner, P. Adult adhd symptoms and satisfaction with life: Does age and sex matter? J. Atten. Disord 2019, 23, 3–1Ramtekkar, U.P.; Reiersen, A.M.; Todorov, A.A.; Todd, R.D. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for dsm-v and icd-11. J. Am. Acad. Child. Adolesc. Psychiatry 2010, 49, 217–228.Skogli, E.W.; Teicher, M.H.; Andersen, P.N.; Hovik, K.T.; Oie, M. Adhd in girls and boys–Gender differences in co-existing symptoms and executive function measures. BMC Psychiatry 2013, 13, 298.Lange, C.; Laird, N.M. On a general class of conditional tests for family-based association studies in genetics: The asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol. 2002, 23, 165–180.Lange, C.; Laird, N.M. Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 2002, 71, 575–584.Rabinowitz, D.; Laird, N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 2000, 50, 211–223.Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300.Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A new method for detecting significant p-values with applications to genetic data. Rev. Colomb. Estad. 2014, 37, 67–76.Lange, C.; DeMeo, D.; Silverman, E.K.; Weiss, S.T.; Laird, N.M. Pbat: Tools for family-based association studies. Am. J. Hum. Genet. 2004, 74, 367–369.Lunetta, K.L.; Faraone, S.V.; Biederman, J.; Laird, N.M. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 2000, 66, 605–614.Xu, X.; Rakovski, C.; Xu, X.; Laird, N. An effcient family-based association test using multiple markers. Genet. Epidemiol. 2006, 30, 620–626.Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of ld and haplotype maps. Bioinformatics 2005, 21, 263–265.Evangelou, E.; Trikalinos, T.A.; Salanti, G.; Ioannidis, J.P. Family-based versus unrelated case-control designs for genetic associations. PLoS Genet. 2006, 2, e123.Laird, N.M.; Lange, C. Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 2006, 7, 385–394.Ott, J.; Kamatani, Y.; Lathrop, M. Family-based designs for genome-wide association studies. Nat. Rev. Genet. 2011, 12, 465–474.Leung, P.W.; Chan, J.K.; Chen, L.H.; Lee, C.C.; Hung, S.F.; Ho, T.P.; Tang, C.P.; Moyzis, R.K.; Swanson, J.M. Family-based association study of drd4 gene in methylphenidate-responded attention deficit/hyperactivity disorder. PLoS ONE 2017, 12, e0173748.Thakur, G.A.; Sengupta, S.M.; Grizenko, N.; Choudhry, Z.; Joober, R. Family-based association study of adhd and genes increasing the risk for smoking behaviours. Arch. Dis. Child. 2012, 97, 1027–1033.Turic, D.; Williams, H.; Langley, K.; Owen, M.; Thapar, A.; O’Donovan, M.C. A family based study of catechol-o-methyltransferase (comt) and attention deficit hyperactivity disorder (adhd). Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 133B, 64–67.Neale, B.M.; Lasky-Su, J.; Anney, R.; Franke, B.; Zhou, K.; Maller, J.B.; Vasquez, A.A.; Asherson, P.; Chen, W.; Banaschewski, T.; et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1337–1344.Gu, X.; Yuan, F.F.; Huang, X.; Hou, Y.;Wang, M.; Lin, J.;Wu, J. Association of pik3cg gene polymorphisms with attention-deficit/hyperactivity disorder: A case-control study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017.Sanchez-Mora, C.; Richarte, V.; Garcia-Martinez, I.; Pagerols, M.; Corrales, M.; Bosch, R.; Vidal, R.; Viladevall, L.; Casas, M.; Cormand, B.; et al. Dopamine receptor drd4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 480–491.Lasky-Su, J.; Banaschewski, T.; Buitelaar, J.; Franke, B.; Brookes, K.; Sonuga-Barke, E.; Ebstein, R.; Eisenberg, J.; Gill, M.; Manor, I.; et al. Partial replication of a drd4 association in adhd individuals using a statistically derived quantitative trait for adhd in a family-based association test. Biol. Psychiatry 2007, 62, 985–990.Brem, S.; Grunblatt, E.; Drechsler, R.; Riederer, P.; Walitza, S. The neurobiological link between ocd and adhd. Atten. Defic Hyperact. Disord. 2014, 6, 175–202.Hawi, Z.; Matthews, N.;Wagner, J.;Wallace, R.H.; Butler, T.J.; Vance, A.; Kent, L.; Gill, M.; Bellgrove, M.A. DNA variation in the snap25 gene confers risk to adhd and is associated with reduced expression in prefrontal cortex. PLoS ONE 2013, 8, e60274.Arcos-Burgos, M.; Velez, J.I.; Martinez, A.F.; Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Richarte, V.; Roncero, C.; Cormand, B.; Fernandez-Castillo, N.; et al. Adgrl3 (lphn3) variants predict substance use disorder. Transl. Psychiatry 2019, 9, 42.Choudhry, Z.; Sengupta, S.M.; Grizenko, N.; Fortier, M.E.; Thakur, G.A.; Bellingham, J.; Joober, R. Lphn3 and attention-deficit/hyperactivity disorder: Interaction with maternal stress during pregnancy. J. Child Psychol. Psychiatry 2012, 53, 892–902.Kappel, D.B.; Schuch, J.B.; Rovaris, D.L.; da Silva, B.S.; Cupertino, R.B.; Winkler, C.; Teche, S.P.; Vitola, E.S.; Karam, R.G.; Rohde, L.A.; et al. Further replication of the synergistic interaction between lphn3 and the ntad gene cluster on adhd and its clinical course throughout adulthood. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 120–127.Sollner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. Snap receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324.Brophy, K.; Hawi, Z.; Kirley, A.; Fitzgerald, M.; Gill, M. Synaptosomal-associated protein 25 (snap-25) and attention deficit hyperactivity disorder (adhd): Evidence of linkage and association in the irish population. Mol. Psychiatry 2002, 7, 913–917.Hess, E.J.; Collins, K.A.; Wilson, M.C. Mouse model of hyperkinesis implicates snap-25 in behavioral regulation. J. Neurosci. 1996, 16, 3104–3111.Galvez, J.M.; Forero, D.A.; Fonseca, D.J.; Mateus, H.E.; Talero-Gutierrez, C.; Velez-van-Meerbeke, A. Evidence of association between snap25 gene and attention deficit hyperactivity disorder in a latin american sample. Atten. Defic. Hyperact. Disord. 2014, 6, 19–23.Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511.Yun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 2010, 218142.Mashayekhi, F.; Hadavi, M.; Vaziri, H.R.; Naji, M. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with alzheimer’s disease. J. Clin. Neurosci. 2010, 17, 357–359.Tao, Q.Q.; Sun, Y.M.; Liu, Z.J.; Ni, W.; Yang, P.; Li, H.L.; Lu, S.J.; Wu, Z.Y. A variant within fgf1 is associated with alzheimer’s disease in the han chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165, 131–136.Yamagata, H.; Chen, Y.; Akatsu, H.; Kamino, K.; Ito, J.; Yokoyama, S.; Yamamoto, T.; Kosaka, K.; Miki, T.; Kondo, I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite alzheimer’s disease. Biochem. Biophys. Res. Commun. 2004, 321, 320–323.Lange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K.P.; Bally-Cuif, L. The adhd-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954.Martinez, A.F.; Abe, Y.; Hong, S.; Molyneux, K.; Yarnell, D.; Lohr, H.; Driever, W.; Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. An ultraconserved brain-specific enhancer within adgrl3 (lphn3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol. Psychiatry 2016, 80, 943–954.Orsini, C.A.; Setlow, B.; DeJesus, M.; Galaviz, S.; Loesch, K.; Ioerger, T.; Wallis, D. Behavioral and transcriptomic profiling of mice null for lphn3, a gene implicated in adhd and addiction. Mol. Genet. Genom. Med. 2016, 4, 322–343.Wallis, D.; Arcos-Burgos, M.; Jain, M.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Lopera, F.; Stanescu, H.; Pineda, D.; Berg, K.; et al. Polymorphisms in the neural nicotinic acetylcholine receptor alpha4 subunit (chrna4) are associated with adhd in a genetic isolate. Atten. Defic. Hyperact. Disord. 2009, 1, 19–24.Adewuya, A.O.; Famuyiwa, O.O. Attention deficit hyperactivity disorder among nigerian primary school children: Prevalence and co-morbid conditions. Eur. Child. Adolesc. Psychiatry 2007, 16, 10–15.Miller, T.W.; Nigg, J.T.; Miller, R.L. Attention deficit hyperactivity disorder in african american children: What can be concluded from the past ten years? Clin. Psychol. Rev. 2009, 29, 77–86.Morgan, P.L.; Staff, J.; Hillemeier, M.M.; Farkas, G.; Maczuga, S. Racial and ethnic disparities in adhd diagnosis from kindergarten to eighth grade. Pediatrics 2013, 132, 85–93.Samuel, V.J.; Biederman, J.; Faraone, S.V.; George, P.; Mick, E.; Thornell, A.; Curtis, S.; Taylor, A.; Brome, D. Clinical characteristics of attention deficit hyperactivity disorder in african american children. Am. J. Psychiatry 1998, 155, 696–698.Castellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628.Pineda, D.A.; Lopera, F.; Puerta, I.C.; Trujillo-Orrego, N.; Aguirre-Acevedo, D.C.; Hincapie-Henao, L.; Arango, C.P.; Acosta, M.T.; Holzinger, S.I.; Palacio, J.D.; et al. Potential cognitive endophenotypes in multigenerational families: Segregating adhd from a genetic isolate. Atten. Defic. Hyperact. Disord. 2011, 3, 291–299.Arcos-Burgos, M.; Muenke, M. Toward a better understanding of adhd: Lphn3 gene variants and the susceptibility to develop adhd. Atten. Defic. Hyperact. Disord. 2010, 2, 139–147.Jimenez-Figueroa, G.; Ardila-Duarte, C.; Pineda, D.A.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Pineda-Alhucema, W.; Cervantes-Gutierrez, J.; Quintero-Ibarra, M.; Sanchez-Rojas, M.; Velez, J.I.; et al. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a caribbean community. Atten. Defic. Hyperact. Disord. 2017, 9, 199–211.Barnett, I.J.; Lee, S.; Lin, X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet. Epidemiol. 2013, 37, 142–151.Emond, M.J.; Louie, T.; Emerson, J.; Zhao, W.; Mathias, R.A.; Knowles, M.R.; Wright, F.A.; Rieder, M.J.; Tabor, H.K.; Nickerson, D.A.; et al. Exome sequencing of extreme phenotypes identifies dctn4 as a modifier of chronic pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 2012, 44, 886–889.Johar, A.S.; Anaya, J.M.; Andrews, D.; Patel, H.R.; Field, M.; Goodnow, C.; Arcos-Burgos, M. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun. Rev. 2015, 14, 204–209.Paz-Filho, G.; Boguszewski, M.C.; Mastronardi, C.A.; Patel, H.R.; Johar, A.S.; Chuah, A.; Huttley, G.A.; Boguszewski, C.L.;Wong, M.L.; Arcos-Burgos, M.; et al. Whole exome sequencing of extreme morbid obesity patients: Translational implications for obesity and related disorders. Genes 2014, 5, 709–725.Villalón, J. Colonias Extranjeras en Barranquilla, Colombia; Ediciones Uninorte: Barranquilla, Colombia, 2008.Mapa Genético de los Colombianos. Available online: http://historico.unperiodico.unal.edu.co/ediciones/ 105/15.html (accessed on 8 March 2019).Pineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Jimenez-Figueroa, G.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Mejía-Segura, E.; Puentes-Rozo, J. Conglomerados de clases latentes en 408 miembros de 120 familias nucleares de barranquilla con un caso índice afectado de trastorno de atención hiperactividad. Acta Neurol. Colomb. 2016, 32, 275–284.Acosta-Lopez, J.; Cervantes-Henriquez, M.L.; Jiménez-Figueroa, G.; Nunez, B.M.; Sanchez, R.M.; Puentes, R.P. Uso de una escala comportamental wender utah para evaluar en retrospectiva trastorno de atención-hiperactividad en adultos de la ciudad de barranquilla. Rev. Univ. Salud 2013, 15, 45–61.DSM-IV. Manual Diagnóstico y Estadístico de Los Trastornos Mentales: Texto Revisado; Masson: Pontarlier, France, 2002.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf494359https://bonga.unisimon.edu.co/bitstreams/950c5d6e-f2f6-42bc-8b2d-ab7ec21872df/download8a8fecb9be6765a17ff21b633eb2c030MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/269df203-66a8-4728-b230-22fd76b4471a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/1fd230dd-f2f8-4944-813d-70524bf6c9e0/download3fdc7b41651299350522650338f5754dMD53TEXTGenetic_Variation_Underpinning_ADHD_Risk.pdf.txtGenetic_Variation_Underpinning_ADHD_Risk.pdf.txtExtracted texttext/plain55253https://bonga.unisimon.edu.co/bitstreams/ee028562-0c84-4eb7-946e-07931034aaac/downloade61ecc9c56bc57c54a6a604722f6f393MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain62804https://bonga.unisimon.edu.co/bitstreams/1bb3c489-ab27-465e-96dc-483470a3eb41/download09a19d5fe63e724f5d9430a23004a732MD56THUMBNAILGenetic_Variation_Underpinning_ADHD_Risk.pdf.jpgGenetic_Variation_Underpinning_ADHD_Risk.pdf.jpgGenerated Thumbnailimage/jpeg1575https://bonga.unisimon.edu.co/bitstreams/3a9c9169-58c1-4c30-bea0-16399c3455d2/download92d2c37e6b8c172661dfa24a7d2f87efMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5205https://bonga.unisimon.edu.co/bitstreams/54bbaf4b-00ba-4ff0-b822-3904ec66a4a4/download9230221bf012a21328c1285addb919b3MD5720.500.12442/3886oai:bonga.unisimon.edu.co:20.500.12442/38862024-08-14 21:53:11.717http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=