Mecanismo de la ATPasa tipo P CtpF de Mycobacterium tuberculosis como diana para nuevos antibióticos antituberculosis

Mycobacterium tuberculosis (Mtb), el agente causal de la tuberculosis (TB), se clasifica predominantemente como un patógeno del sistema respiratorio, aunque tiene la capacidad de afectar otros órganos y tejidos del cuerpo. Esta enfermedad representa un desafío significativo en países con recursos ec...

Full description

Autores:
Pestana Nobles, Roberto Carlos
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/14584
Acceso en línea:
https://hdl.handle.net/20.500.12442/14584
Palabra clave:
Mycobacterium tuberculosis
Dinámica molecular
Docking molecular
CtpF
Inhibidores
Tuberculosis
Dinámica molecular gaussiana acelerada
ATPasa tipo P.
Mycobacterium tuberculosis
Molecular dyamics
Molecular docking
CtpF
Inhibitors
Tuberculosis
Gaussian accelerated molecular dynamics
ATPase type P.
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
Description
Summary:Mycobacterium tuberculosis (Mtb), el agente causal de la tuberculosis (TB), se clasifica predominantemente como un patógeno del sistema respiratorio, aunque tiene la capacidad de afectar otros órganos y tejidos del cuerpo. Esta enfermedad representa un desafío significativo en países con recursos económicos limitados, donde aproximadamente 1,5 millones de individuos fallecen anualmente a causa de esta. El tratamiento actual para la TB sigue las directrices establecidas por la Organización Mundial de la Salud (OMS), consistiendo principalmente en un tratamiento usando fármacos de primera línea: isoniacida (INH), rifampicina (RIF), etambutol (EMB) y pirazinamida (PZA). Una problemática central en el manejo de la TB es la interrupción prematura del tratamiento anti-TB, factor que contribuye significativamente a la aparición y propagación de cepas de Mtb resistentes a múltiples medicamentos, conocidas como Tuberculosis multi-resistente (TB-MDR) y Tuberculosis extremadamente-resistente (TB-XDR). Ante la necesidad urgente de superar las limitaciones de los tratamientos actuales y prevenir el desarrollo de resistencias bacterianas, se hace imperativo buscar y validar nuevos blancos terapéuticos que ofrezcan mecanismos alternativos de acción. En este contexto, emergen como blancos prometedores las ATPasas tipo P de Mtb, unas proteínas de membrana que catalizan el transporte de iones contra gradientes de concentración utilizando la energía derivada de la hidrólisis del ATP. Estas proteínas juegan roles esenciales en los procesos de transporte celular y en la interacción entre el patógeno y su huésped, convirtiéndose en candidatos ideales para el desarrollo de nuevas estrategias terapéuticas debido a su ubicación accesible en la membrana celular, lo cual facilita el abordaje por parte de agentes farmacológicos sin enfrentar obstáculos significativos de permeabilidad. Por lo que en este estudio se seleccionó la proteína CtpF, una bomba de eflujo específica para iones de calcio, la cual se encuentra implicada en mecanismos de defensa y supervivencia de la Mtb dentro del macrófago. Con el fin de tener una representación más fiel al entorno químico de la proteína, esta fue modelada dentro de una membrana lipídica compuesta por 1-palmitoil-2-oleoil-fosfatidilcolina (POPC) usando el servidor CHARMMGUI. Con este sistema construido se procedió a realizar una dinámica molecular gaussiana acelerada (GaMD) por 1 microsegundo, con el fin de explorar los movimientos intrínsecos de la proteína. La modelación de la proteína CtpF dentro de un ambiente simulado permitió estudiar la dinámica de la proteína y como esta se relaciona con su mecanismo enzimático, además se lograron identificar 4 compuestos con potencia inhibitoria para la proteína CtpF. A través de docking molecular, se evaluaron en total 670.000 moléculas, de las cuales 4 resultaron ser posibles inhibidores para la proteína CtpF. Estos 4 posibles inhibidores fueron evaluados usando dinámica molecular y cálculos de energía de interacción a través de MMPBSA comparando sus resultados con un ligando de referencia Ácido ciclopiazónico (CPA), energía de unión: -31.8663, donde se lograron identificar los aminoácidos que juegan un papel clave en la interacción con los ligandos. Se identificaron los siguientes compuestos, ligando L_43303, nombre IUPAC: Morfolina urea 1,2,4,5-tetraoxano, código ChEMBL: CHEMBL259023, energía libre de unión de -23.2025 kcal/mol. Ligando L_59025, nombre IUPAC: 2,2'-espirobi[6,7,8,9-tetrahidro-3H-ciclopenta[a]naftaleno]-1,1'- diona, energía libre de unión: -24.1896 kcal/mol. Ligando L_4946, nombre IUPAC: 1-[4-[3-(1-quinolin-2-ilazetidin-3-il)pirazin-2-il]piperazin-1-il]etanona, energía libre de unión: -29.358 kcal/mol. Ligando L_113260, nombre IUPAC: 10-amino-12-(3- metilfenil)-1,3,13-triazapentaciclo[11,8,0,02,11,04,9,015,20]henicosa2,4(9),10,15,17,19-hexaeno-14,21-diona, código ChEMBL: CHEMBL4213928, energía libre de unión: -30.1867 kcal/mol. Siendo el ligando L_113260 como posible punto de partida para para el diseño de nuevos fármacos mediante técnicas de hitto-lead y docking molecular basado en fragmentos. Este enfoque de la modelación molecular promete abrir nuevas vías para el desarrollo de terapias más efectivas y rápidas contra la TB, abordando así uno de los problemas de salud pública más urgente a nivel global.